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SUMMARY

This paper presents a new hierarchical mode segmentation
of the observed driving behavioral data based on the multi-level
abstraction of the underlying dynamics. By synthesizing the
ideas of a feature vector definition revealing the dynamical char-
acteristics and an unsupervised clustering technique, the hierar-
chical mode segmentation is achieved. The identified mode can be
regarded as a kind of symbol in the abstract model of the behav-
ior. Second, the grammatical inference technique is introduced
to develop the context-dependent grammar of the behavior, i.e.,
the symbolic dynamics of the human behavior. In addition, the
behavior prediction based on the obtained symbolic model is per-
formed. The proposed framework enables us to make a bridge
between the signal space and the symbolic space in the under-
standing of the human behavior.
key words: Hybrid system identification, Hierarchical mode seg-
mentation, Formal grammar, Driving behavior

1. Introduction

Recently, many ideas have been exploited for the driver
modeling from viewpoint of the control technology
and the information processing to realize the safe and
human-friendly cars [1][2][3][4].

In the driving behavior, it is often found that the
driver appropriately switches the simple control laws
[9][10][11] instead of adopting the complex nonlinear
control law [5][6]. This idea can be verified by execut-
ing a ‘mode segmentation’ of the observed driving data
according to the classification of the dynamical charac-
teristics underlying the behavioral data [7][17][18][19].
This strategy also can be regarded as one of the solu-
tions for the ‘symbolic grounding’ problem by assign-
ing each obtained mode to each symbol. The symbolic
grounding problem often appears in the design of intel-
ligent systems interacting with real-world [8]. Further-
more, the transition between modes can be regarded
as a kind of driver’s decision-making in the complex
driving task [19]. Thus, the introduction of the mode
segmentation leads to higher level understanding of the
driving behavior wherein the motion control and deci-
sion making aspects are synthesized.
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Another important characteristics in the human
behavior is described by its hierarchical structure, i.e.,
many behaviors can be understood by a hierarchical
modeling characterized by the different level of abstrac-
tion of dynamics. From this viewpoint, it is quite nat-
ural to introduce the ‘hierarchical mode segmentation’
in the analysis of the human behavior. As the conse-
quence, a hierarchical symbolization of the human be-
havior can be realized based only on the observed be-
havioral data (without any prior knowledge). The hier-
archical symbolization is expected to play an essential
role in the design of intelligent human support system
thanks to its high describability and understandability
of the complex behavior.

Based on these considerations, first of all, we pro-
pose a new hierarchical mode segmentation of the ob-
served driving behavioral data based on the multi-level
abstraction of the underlying dynamics. In order to
realize this idea, a PieceWise AutoRegressive eXoge-
nious (PWARX) model is introduced. The PWARX
model is often used as the identification model of the
hybrid dynamical systems [12][13][14][15] wherein each
ARX model represents the corresponding dynamics of
each mode. In our problem setting, the number of
modes (the number of symbols) is supposed to be con-
trollable to obtain the hierarchical structure although
it is assumed to be fixed in the standard framework
of the hybrid system identification. By synthesizing
the ideas of definition of the feature vector revealing
the dynamical characteristics[12] and an unsupervised
clustering technique[16], the hierarchical mode segmen-
tation is achieved. The usefulness of the hierarchical
mode segmentation is demonstrated by applying to the
driving behavioral data on the expressway. Second,
the grammatical inference technique[22] is introduced
to develop the context-dependent grammar of the be-
havior, i.e., the symbolic dynamics of the human be-
havior. The vector quantized environmental informa-
tion and the identified mode obtained by the clustering
are regarded as the environment symbol and the mode
symbol, respectively. Then, the production rules to ex-
press the relation between the environment and mode
symbols are identified. The proposed framework en-
ables us to make a bridge between the signal space and
the symbolic space in the understanding of the human
behavior. Finally, the proposed framework is applied to



the long-term behavior prediction, and its usefulness is
verified.

2. Hierarchical mode segmentation

In this section, we discuss how to define the ‘mode’
in the driving behavioral data and how to obtain the
hierarchical structure. First of all, the driver input and

output are defined.

2.1 Definition of input and output

Leading Car

Examinee’s Car

Fig.1 Definition of the input signals.

Throughout this paper, we focus on the driving
behavior on the expressway which consists of ‘following
the leading vehicle’, ‘lane changing’, ‘overtaking’, and
so on. All driving data are obtained by using Driving
Simulator (DS) [19]. The view from the driver is shown
in Fig.2. The driver input, i.e., the sensory information
of the driver is defined as follows (Fig.1):

e Range from the leading car: u;

e Range rate between the leading and examinee’s

cars: ug

Lateral displacement from the leading car: us

Yawing angle of examinee’s car: uy

Index for approaching (KdB): us

Amount of time duration that the examinee looks

at the left side mirror in the latest 10 [s] (TL): ug

e Amount of time duration that the examinee looks
at the right side mirror in the latest 10 [s] (TR):
ur

ug and uy are obtained by using the ‘eyemark recorder’
developed by nac image technology Inc. KdB is an in-
dex which represents the logarithm of a time derivative
of the area of the back of the leading car projected
on the driver’s retina [20]. In [20], it is verified that
this index plays an important role in the recognition
of approaching objects from viewpoint of the cognitive
science. Although it is unlikely that the KdB is able to
be measured directly, it can be calculated using u; and
ug by following equation.

—10 x log(| — 2 x Z—% X 75“104 b
Zf ug >0
KdB = - 1
10 x log(] =2 x 1 X gig=s) 1)

if wuy <0

Fig.2 View from the driver.

The large KdB implies that the driver is facing dan-
gerous situation. Also, the driver output is defined as
follows:

e Steering angle: y;
e Pedal operation: 15

These input and output variables are chosen so that
the resulting model can express the behavioral charac-
teristics underlying the observed data. Furthermore,
these variables can be observed in the real driving sit-
uation by using existing sensors. Based on these input
and output definitions, the mathematical model of the
driving behavior is discussed in the next subsection.

2.2 PWARX model as mathematical representation of
multi-mode driving behavior

In this subsection, the PWARX model is introduced
as a mathematical model of the driving behavior. The
PWARX model consists of several ARX models, i.e.,
modes, and can express a complex input-output rela-
tionship with any approximation level by appropriately
controlling the number of modes. We consider the fol-
lowing first order PWARX model which has s modes:

y(k) = f(r(k)) + (k)

Or1r(k) if r(k) e R
Oar(k) if r(k) eR

fry = TP ERe (2)
Osr(k) if r(k) € Rs

where €(k) is an equation error. y(k) and r(k) are also
defined as follows:

y(k) = (y1 (k) y2(k))" (3)
r(k) = (u1(k—1) ua(k —1) -+ ur(k—1)
yi(k —1) y2(k —1)" (4)
The subscript k& denotes the sampling index (k =
1,2...,n). Furthermore, 0; (i = 1,---,s) is a (2 x 9)
unknown matrix to be identified from the data, and is
supposed to have a form:



oT

=) X
In the PWARX model, not only parameters 6; but
also the partitions of the subspaces R1,- -, R are un-
known. Therefore, it is not straightforward to assign
each observation (y(k), r(k)) at sampling instant k to
the corresponding mode. To resolve this problem, a
clustering based technique is developed in [12] under
the definition of interesting feature vector which rep-
resents the local dynamical characteristics underlying
(y(k), r(k)). In the next subsection, this feature vector
is introduced.

2.3 Definition of feature vector

1. Assume that the set of sample data {(y(4), 7(5))},
(j = 1,2...,n) is given. For each sample data
(y(4), r(j)), collect the neighboring ¢ data in the
(y, r) space, generate the local data set LDj,
and calculate the feature vector &; (see Fig.3(a)).
Note that the index j indicates the order not in
the time space but in the data space. The fea-
ture vector &; conmsists of the local parameters
((0FP)", (0557)™)" in the local ARX model for the
LD; and the mean value m; of the data r in the
LDj;. (07)" (I = 1,2) and m; are calculated as

follows:
ajL,lD = (q)?q)j)ilcb;ryLDj,l (6)
1
m; = - Z r (7)

reLD;

where yrp; 1 (cx1; [ = 1,2) is the output samples
in the LDj, and ®; is given by

(I)j = (7"1 To - - TC)T (T’ S LD]) (8)

As the result, & = ((07)", (0F)", mT)T.

2. For each feature vector £, the following covariance
matrix R; is calculated:

Vii O 0
Rj = 0 ‘/jg 0 (9)
0 0 @
where
SSR;, T N1
‘/Jl C—(9+1)( J ]) (O)
SSRj; = y%Dj,l(I — (0] ;)1 ® )yLp,
(11)
Q; = Z (r—mj)(r—mj)T (12)
reLD;

The feature vector &; represents the combination of the
local dynamics and data. By this definition, the data is
classified based not only on the value of data but also

on the similarity of the underlying dynamics. Further-
more, the covariance matrix R; represents the confi-
dence level of the corresponding feature vector &;. R;
is used as the weighting matrix in the calculation of the
dissimilarity between feature vectors in the clustering
procedure.

2.4 Unsupervised hierarchical clustering

The unsupervised hierarchical clustering is applied to
the feature vectors §; (j = 1,---,n). The clustering
algorithm is listed below:

1. Regard each feature vector &; as each cluster Cj,
i.e., each cluster consists only of one feature vec-
tor. Calculate the dissimilarity D, , between any
two clusters C, and C, by using the following dis-
similarity measure:

Dpq=18& —& ||§g;}1
= (fp - gq)TR;,é(gp - fq) (13)
where
Ro.=R,'+ R, " (14)

2. Unify two clusters C; and Cy which shows the
smallest D, ,. The unified cluster is denoted by
C... If all clusters are unified, terminate the algo-
rithm. Otherwise, go to step 3.

3. Calculate the dissimilarity D,.; between C, and C}
for all ¢ (¢ # r) by using the following dissimilarity
measure:

o Ny e 12
Dro=r=e > > l&—6 5 (9)

i, €Cr &, €C

where n, and n; are numbers of feature vectors
belonging to clusters C, and Cj, respectively. Go
to step 2.

After this clustering procedure, the classification
of the feature vector space is achieved together with a
dendrogram which shows the hierarchical classification
for different number of modes. Since the transforma-
tion from the feature vector (£) space to the original
observed data (y, r) space is straightforward, the mode
segmentation of the observed data is obtained together
with the hierarchical structure.

Note that once mode segmentation of the data is
achieved, the identification of the parameters 6; and the
partitions of the subspaces R1,---,Rs in the PWARX
model (2) is straightforward.

3. Analysis of driving behavioral data
3.1 Driving environment

In this paper, the following driving environment on
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Fig.3 Outline of mode segmentation.

the expressway was designed on the driving simulator
which provides a stereoscopic immersive vision.

e The expressway is endless, and has two lanes, the
cruising lane and the passing lane.

e There are 10 cars on the cruising lane. Five of
them are running ahead of the examinee’s car.
The remaining five cars are running behind the
examinee’s car. Their velocities vary from 70 to
85[km/h]. Once the examinee’s car overtakes the
leading car, then the tale-end car on the cruising
lane is moved to the head of the cars running on
the cruising lane. The examinee is not aware of
this change.

e There are 10 cars on the passing lane. Five of
them are running ahead of the examinee’s car.
The remaining five cars are running behind the
examinee’s car. Their velocities vary from 90 to
110[km/h]. Once the examinee’s car is overtaken
by the car on the passing lane, then the top car
on the passing lane is moved to the tale-end of the
cars running on the passing lane. The examinee is
not aware of this change.

e The range between cars is set to be 50 to 300[m],
and there is no collision between cars except the
examinee’s car.

e There is no lane change of the cars except the ex-
aminee’s car.

Under this driving environment, five examinees per-
formed the test driving. Note that the examinees were
provided with the instruction ‘Drive the car according
to your usual driving manner’. Since this instruction is
‘loose’ instruction, the examinees do not concern much
about the environmental information. As the result,

each examinee can drive as his/her usual manner.

3.2 Observed behavioral data and clustering results

25 s=2

Dissimilarity

Fig.4 Dendrogram of clustering (Examinee A).

The unsupervised clustering based on the feature
vector shown in the previous section has been applied
to the observed driving behavioral data. The dendro-
gram obtained from the proposed strategy is shown in
Fig.4. In Fig.4, the vertical axis represents the dis-
similarity between clusters. When the two clusters are
unified, the corresponding dissimilarity is designated by
the horizontal bar. The horizontal axis represents the
data which is rearranged after the clustering to show
the hierarchical structure clearly. From this figure,
we can clearly understand the hierarchical structure in
the driving behavior. As the typical example, the two
dashed horizontal lines are superimposed. The upper
line shows the case that the number of modes (clusters)
s, i.e., the number of the ARX models in (2) is set to be
two. On the other hand, the lower line shows the case
that s is set to be five. In Fig.5, the observed driving
(input-output) profiles are shown. All profiles are nor-
malized before clustering. In the profile of the lateral
displacement, it takes positive value when the exam-
inee’s vehicle is on the right side of the leading car.
The steering angle takes positive value when the exam-
inee turns it clockwise. Also, the pedal operation takes
positive value when the accelerator is stepped on, and
takes negative value when the braking pedal is stepped
on. Note that the range, the rage rate and the lat-
eral displacement profiles show discontinuity at some
time instants. Since these variables are defined by the
relative displacement from the leading car, if the ex-
aminee’s car changes the driving lane, these variables
change discontinuously.

In addition, the clustering results in the case of
two-mode modeling are indicated by colors in Fig.5.
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Fig.5 Observed profiles and mode segmentation result (Ex-

aminee A, 2modes).

Thus, the mode segmentation works well. In order to
investigate the behavioral meaning of each mode, a part
of the profile of the lateral displacement is enlarged in
Fig.7. As shown in Fig.7, the meaning of two modes
can be understood as the ‘Following on Cruising Lane
+ Passing’ (Mode 1: FC+P mode) and ‘Following on
Passing Lane + Returning’ (Mode 2: FP+R mode), re-
spectively. Note that the range rate is always positive
in the Mode 2 in Fig.5. This implies that there ex-
ist some implicit common sense in the driving behavior
such as ‘should keep the legal speed on the passing lane’
in addition to the instruction. Thus, the symbolization
of the behavior can be achieved based on the ‘dissimi-
larity’ of the underlying dynamics. No prior knowledge
is necessary in this symbolization except the definition
of the input and output variables of the behavior.

3.3 Discussion
In order to analyze the hierarchical structure of the be-

havior, the clustering results in the case of five-mode
modeling are shown in Fig.6, and the enlarged lateral
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Fig.6 Observed profiles and mode segmentation result (Ex-
aminee A, 5modes).
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Fig.8 Enlarged profile of the lateral displacement (Examinee

A, 5modes).

displacement is shown in Fig.8. From Fig.8, we can see
that the two-mode model is further decomposed into
the local behaviors; they are ‘Long Range Following on
Cruising Lane’ (Mode 1: LRFC mode), ‘Short Range



Following on Cruising Lane’ (Mode 2: SRFC mode),
‘Passing’ (Mode 3: P mode), ‘Following on Passing
Lane’ (Mode 4: FP mode), and ‘Returning’ (Mode 5:
R mode). The switching between these modes cor-
responds to the change of the control modes caused
by either the driver’s intention or change of the envi-
ronment. The hierarchical relationship between these
modes found in the dendrogram is depicted in Fig.9.
Thus, the hierarchical structure of the driving behavior
can be obtained in a quite consistent manner. One of
the significant contributions of this work is that this
hierarchical structure is obtained automatically based
only on the observation (including the definition of the
input and output signals) and data processing from
viewpoint of the dynamics. Since this hierarchy clearly
expresses the multiple abstraction level of the human
behavior, the proposed framework is expected to be a
basis for the design of many human centric systems.

_________________________ -~
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| + Passing Mode + Returning Mode |
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Fig.9 Identified hierarchical structure of driving behavior (Ex-
aminee A).

4. Development of symbolic behavior model
and its application to behavior prediction

In this section, the human behavior is considered as
a source which is capable of generating a specific lan-
guage (set of symbol strings). This can be realized by
regarding the driving mode estimated in the section 3
as a symbol. The grammar G of the language is the set
of production rules that specifies all the strings in the
language and their relationships. Once the grammar is
found, the grammar itself is a model for the source of
the behavior.

4.1 Definition of behavioral grammar

First of all, the behavioral grammar G is defined as
follows:

G ={%m, X, S, P} (16)

3. is amode alphabet, i.e., the set of mode symbols de-
fined by the clustering introduced in section 3. There-
fore, the number of mode symbols |¥,,| = s, i.e., the

number of ARX models. ¥, is an environment alpha-
bet, i.e., the set of symbols created by a vector quanti-
zation of the environmental information. The number
of environment symbols |X.| depends on the quanti-
zation. In the proposed framework, ¥, and ¥, are
regarded as a terminal alphabet and a nonterminal al-
phabet in the standard grammar, respectively. S is a
special nonterminal symbol used to start the genera-
tion of string. P is a set of production rules, i.e., the
substitution rules (denoted by a — b) used to generate
the strings. The n — type production rules are defined
as substitution rules of the form

Mpg—p - Mpg—1Ep = Mp—p -+ - Mp_ 1My 6 (17)

where my_, - --mp_1 is a sequence of mode symbols,
Ej is an environment symbol, and § is a special non-
terminal symbol. § is used to indicate the conclusion,
or not, of a generated string by the use of the following
special set of production rules:

{ 60— Epy1  or

0 — A (18)

where A denotes the empty symbol. The n — type pro-
duction rule encodes the evolution of the mode depend-
ing on its n past modes and on the environment symbol
E. Therefore, the n — type production rule can be re-
garded as a symbolic dynamics whose order is specified
by n. Once G is identified, the symbolic behavior can
be computed by executing the production rules.

4.2 Grammatical inference

Development of the symbolic behavior model can be
formulated as the grammatical inference problem [22]
under the suitable definitions of the mode and envi-
ronment alphabets. Grammatical inference, in general,
is the identification of a grammar from a set of exam-
ples. The main part of the grammatical inference is the
generation of the production rules based on the obser-
vation, and is realized by the following procedure (See
[22] for detail).

1. A 0 — type production rule is assumed for every
newly occurring environment symbol.

2. A new (n+ 1) — type production rule is generated
whenever the data conflicts with the previously es-
tablished n — type production rules. The conflict-
ing n — type production rules are also promoted to
(n 4+ 1) — type production rules or are deleted if
there is not sufficient information in the past.

As an example, consider the following symbol sequence
which is supposed to be obtained from the observation:

Time [[ &1 [ t2a [ 3 [ ta [ &5 [ s

Env. symbol || O4a | Op | O4 | O4 | O | Oa
Mode symbol e d c b d e
m; € {b, ¢, d, e}, E; €{0a, Op}



At the beginning, the algorithm analyzes the lead-
ing symbols. Since no other information is yet avail-
able, a 0 — type production rule O4 — ed is assumed.
After analyzing the second symbol, the algorithm es-
tablishes another 0 — type production rule Op — dd.
The third symbol would yield a 0 — type production
rule O4 — c¢b. However, this production rule contra-
dicts the previously established O4 — ed. Therefore,
in this case, a 1 — type production rule dO4 — dcd is
obtained. The 0 — type production rule O4 — €6 is
deleted because no information is available in the past
on the first symbol ‘e’. At the next step, we obtain
the production rule cO 4 — ¢bd. Another conflict arises
when we reach the last symbol. Then a 2 — type pro-
duction rule bdO 4 — bded is obtained and dO 4 — dcd
is revised to edO4 — edcd. As the result, the following
production rules are generated:

Op — do, cOy — cbd,
bdO 4 — bded, edOs — edcd (19)

4.3 Application to symbolic behavior modeling and
prediction

4.3.1 Definition of environment symbol

First of all, the environment symbols are defined by the
vector quantization of the relative position (X;) and rel-
ative velocity (V;) of the six surrounding cars as shown
in Fig.10. Since the goal is to realize the long-term pre-
diction based on the symbolic model, the wider range
of cars are considered as the environment than the def-
inition of the input variables for the PWARX model.
The CSL (Competitive and Selective Learning) algo-

Cruising Lane KR ] LN
[Passing Lonc G- E>  IET> [
k 5] !
Xg X4
Fig.10 Definition of environment.

rithm [21] was used for the quantization. The neces-
sary number of symbols depends on the complexity of
the environment. Here, 10 symbols (O to Oj) were
obtained and their representative values are shown in
Table 1.

4.3.2 Behavior prediction based on production rules

By applying the grammatical inference to the two-mode
model and the five-mode model, we have developed the
two symbolic behavior models with different definition
of the mode symbol. The example of the generated
rules for the examinee A is depicted in Fig.11 in the

Table 1 Representative value of each environment symbol
variable Oa Op O¢ Op Og
L[m)] 3.51 2.23 0.44 0.48 3.49
X1[m] 225.43 618.01 267.23 258.12 360.29
Xo[m] 99.85 354.52 118.24 72.98 116.02
X3[m] -163.60  -119.79 -72.30 -31.16 -487.75
X4[m] 118.21 204.18 141.11 203.39 93.06
X5 [m] -52.40 -40.03 -60.75 -38.78 -61.01
Xe[m] -246.93 -180.44 -258.79 -226.72 -259.18
Vi [km/h] -27.71 -26.40 -28.88 -16.38 -29.18
Va[km/h] -27.43 -27.01 -29.12 -15.37 -26.59
V3[km/h] -27.40 -35.22 -28.89 -15.30 -35.08
Vi[km/h] 21.02 13.19 18.54 35.25 11.25
Vs [km/h] 18.28 4.57 7.40 1.82 11.29
Vs [km/h] 19.93 9.76 15.82 30.37 11.41
variable OF OG OH O[ OJ
L[m] 3.54 3.00 0.40 3.69 0.64
X1[m] 163.20 255.99 302.79 427.63 128.47
Xo[m] 52.25 26.28 78.48 193.21 10.30
X3[m] -65.00 -135.92 -21.02  -158.32  -208.27
Xa[m] 104.10 67.83 122.16 113.27 99.87
X5 [m] -96.38  -114.85 -71.96 -77.15 -104.00
Xe[m] -300.58 -334.29 -305.18 -245.84 -350.50
Vi [km/h] -13.32 1.83 -12.15 -13.31 -11.21
Vo [km/h] -12.14 -0.57 -13.52 -13.77 -10.44
V3[km/h] -8.79 0.52 -11.37 -19.18 -8.34
Valkm/h] 39.27 50.85 38.02 29.67 38.40
Vs|km/h] 33.51 47.61 30.85 26.04 34.99
Ve |km/h] 38.85 50.97 38.12 27.75 38.52

case of the five-mode model. The obtained rules are
classified into two kinds of rules: (1) the rule to keep the
same mode, (2) the rule to change the mode. In Fig.11,
the symbols a, b, ¢, d and e correspond to the driving
modes 1, 2, 3, 4 and 5 in section 3.3, respectively. For
example, e/b*Op — ¢ implies that the driving mode ‘e’
(Modeb: returning) continues j times followed by the
driving mode ‘b’ (Mode2: short range following in the
cruising lane) which also continues k times in the past,
and the current environment symbol is ‘Op’, then the
next mode is changed to the driving mode ‘¢’ (Mode3:
passing).

ﬂ{ule to keep the same mode: \

a0, —a b"O,—b ...

Rule to change the mode:

, b, ¢, d, e driving mode

a
\ {n, m, I, j, K : number of continuation j

Fig. 11
model).

Example of the generated production rules (five-mode

The number of identified rules and the average of
rule type are shown in Table 2. In the two-mode model,
the number of identified rules is smaller, but the aver-
age of rule type is higher compared with the five-mode



model. This implies that these factors depend on the
‘resolution’ of the symbolic representation. Another in-
teresting inquiry is that the number of identified rules
varies from examinee to examinee. The examinee who
has great number of rules (like the examinee E) can be
considered to have an inconsistent driving manner.

In addition, the prediction of the behavior based on
the symbolic model was performed. In order to predict
the future behavior, the prediction of the environment
symbol must be considered. In this work, the predic-
tion of the environment symbol was realized by a simple
first-order prediction of X;s and V;s. Figure 12 shows
the success rate of the prediction for various prediction
horizon using the several models with different number
of modes (1 step is 240 [ms]). From Fig.12, the suc-
cess rate goes down as the prediction horizon becomes
longer. However, even in the five-mode model, about
70% success rate is achieved for 10step (2.4[s]) ahead
prediction. Furthermore, the low-mode model shows
higher success rate than the high-mode model. Thus,
the proposed framework can control the prediction ac-
curacy by choosing the ‘resolution’ of the symbolic rep-
resentation.

Table 2  Statistics of generated production rules (five exami-
nees)
two-mode model five-mode model
Number | Number Ave. of Number Ave. of

Exam. of data of rules rule type of rules rule type
A 2851 90 27.6 1026 18.4
B 2908 120 22.6 996 17.7
(@] 2424 273 21.0 962 18.2
D 3008 448 21.0 1251 18.4
E 3063 670 20.6 1640 14.8

—6—2 mode model
—2— 3 mode model
—&—4 mode model
—%—5 mode model

Success rate [%0]
5

N
=

1 2 3 4 5 6 7 8 9 10
Prediction horizon

Fig.12 Success rate of the prediction for various prediction
horizon (all examinees).

5. Conclusion

This paper has presented a new hierarchical mode

segmentation of the observed driving behavioral data
based on the multi-level abstraction of the underlying
dynamics. By synthesizing the ideas of the feature vec-
tor definition revealing the dynamical characteristics
and the unsupervised clustering technique, the hier-
archical mode segmentation has been achieved. The
identified mode can be regarded as a kind of symbol in
the abstract model of the behavior. Second, the gram-
matical inference technique was introduced to develop
the context-dependent grammar of the behavior, i.e.,
the symbolic dynamics of the human behavior. In ad-
dition, the behavior prediction based on the obtained
symbolic model was performed and discussed. The
proposed framework enables us to make a bridge be-
tween the signal space and the symbolic space in the
understanding of the human behavior. The design of
the environment symbol with hierarchical structure and
application to anomaly detection to realize the safety
man-machine systems are our future works.
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