
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 26, NO. 1, JANUARY 2018 51

Model Predictive Charging Control of In-Vehicle
Batteries for Home Energy Management Based

on Vehicle State Prediction
Akira Ito, Member, IEEE, Akihiko Kawashima, Member, IEEE, Tatsuya Suzuki, Member, IEEE,

Shinkichi Inagaki, Member, IEEE, Takuma Yamaguchi, and Zhuomin Zhou

Abstract— Thanks to recent development of reciprocal
communication networks and electric power management
infrastructure, an energy management system, which can
automatically regulate supply-demand imbalances under
conditions of the users’ convenience and economy, is attracting
great attention. On the other hand, finding of new usage of the
batteries employed in electric vehicles and plug-in hybrid vehicles
is recognized as one of key issues to realize the sustainable society.
In addition, development of vehicle to X technology enables
us to use the electric power of in-vehicle batteries for various
purposes. Based on these backgrounds, this paper presents an
integrated strategy for charging control of in-vehicle batteries
that optimizes the charge/discharge of in-vehicle batteries in a
receding horizon manner exploiting the predicted information on
home power load and future vehicle state in the household. The
prediction algorithm of future vehicle state is developed based
on semi-Markov model and dynamic programming. In addition,
it can also be implemented in receding horizon manner, i.e., the
predicted vehicle state is updated at every control cycle based
on the new observation. Thus, the harmonious combination
of stochastic modeling/prediction and MPC in real-time home
energy management system is one of the main contributions
of this paper. Effectiveness of the proposed charging control is
demonstrated by using an experimental testbed.

Index Terms— Dynamic programming (DP), home energy
management system (HEMS), in-vehicle battery, model predictive
control (MPC), vehicle state prediction.

I. INTRODUCTION

SMART grid infrastructures [1] have attracted substantial
interest for use as highly effective electric power

management systems working in tandem with recently
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developed reciprocal communication networks. One of the
most important considerations for a smart grid system is
maximum utilization of renewable power sources such as
photovoltaics (PVs) and wind-powered generators, which is
beneficial in terms of economy and sustainability.

To obtain supply-demand balance while using renewable
energy sources, a dynamic pricing (DP) strategy that aims
to influence consumer demand to bring it more in line
with supply has been proposed [2], [3]. The success of
the DP strategy, however, strongly depends on the actual
responses of customers to time-varying prices [4]. As can be
easily imagined, it is generally inconvenient and impractical
to have customers continuously keep being aware of
prices. Therefore, an energy management system, which
can automatically regulate supply–demand imbalances under
conditions of the users’ convenience and economy, is required.

From these perspectives, the importance of home energy
management system (HEMS) is growing, because it has a
potential to meet the requirement of supply–demand bal-
ance automatically with considering the customer’s demand
explicitly. Two basic techniques have been used within the
framework of the HEMS to achieve automatic supply–demand
balance in household. The first technique is a load-side control.
This technique focuses on operational or power consumption
flexibility for household appliances and attempts to schedule
appliance operation to avoid consumer inconvenience [5], [6].
This method is appropriate for commercial facilities that have
well-regulated power demands. The second technique is a
supply-side control. This technique focuses on scheduling
of power storage such as batteries and heat pumps. Storage
enables the maximum use of renewable energy and results in
low energy cost, and provides power according to consumer
demand [7], [8]. This technique is appropriate for homes
wherein power demand tends to vary. However, typical storage
systems such as batteries, particularly ones employed in the
HEMS, have their own challenges because of the difficulty in
obtaining the optimal tradeoff between cost and size of the
storage system.

To address these concerns, the batteries employed in electric
vehicles (EVs) and plug-in hybrid vehicles (PHVs) have been
proposed to serve the dual purpose of transportation and
home electric power storage [9]–[11]. This is also motivated
by the grave concern of finding new usage of the batteries
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employed in EVs and PHVs in automobile society [12], [13].
Although there have been lots of works investigating how to
embed the EVs in the HEMS [14]–[16], the problem how
to deal with the dual purpose at each household has not
been clearly addressed yet. In previous studies [17], [18],
for example, the start time of battery charge or discharge
was scheduled according to the preset profile for departure
and arrival times of the vehicle. However, owing to the dual
purpose, the HEMS that exploits in-vehicle batteries must
plan the charge and discharge schedule based on the predicted
future vehicle state (i.e., used for transportation or not) that
reflects the customer demand. This necessitates the explicit
combination of the real-time optimization and the prediction
of the future vehicle state in the design of the HEMS.

As for the prediction strategy of the future vehicle state,
there have been some works [19], [20]. These works, however,
focused on the prediction of aggregated vehicle state of
massive cars. In the car navigation system, although there
have also been some works to predict travel time to reach the
destination [21], [22], the explicit prediction of the departure
time at home was not fully addressed.

Considering these backgrounds, this paper presents an
HEMS which integrates a prediction of future vehicle usage
and home load, optimization of the charge/discharge profile
of the in-vehicle batteries employed in EVs or PHVs, and
real-time execution by using model predictive control (MPC)
framework. In prediction part, first of all, the home power
load prediction is investigated by using autoregressive (AR)
model, then, a prediction scheme for the most likely future
vehicle state sequence, i.e., the profile of vehicle departure and
arrival times in household, is developed. This is achieved by
using dynamic programming (DP) over semi-Markov model
which is designed based on statistical data of daily vehicle
use [23], [24]. The HEMS optimizes the charge/discharge
profile of the in-vehicle batteries under consideration of many
important constraints. The optimization is formulated by using
mixed integer linear programming (MILP) so as to minimize
the daily home electricity cost based on predictions. In addi-
tion, the optimization is made in real time using receding
horizon manner, which can improve the robustness against the
prediction and/or modeling errors. The effectiveness of the
proposed scheme is experimentally verified by using HEMS
experimental testbed, and discussed particularly focusing on
the robustness and economical benefits.

Since the proposed vehicle state prediction can be
implemented in receding horizon manner, i.e., vehicle state
prediction is updated at every control cycle based on the
new observation, it has high compatibility with MPC. Thus,
the combination of stochastic modeling/prediction and MPC,
and its implementation on real-time HEMS are important
contributions of this paper. The strategy of combining
stochastic modeling/prediction and MPC is also found in
some other application fields [25], [26], which show higher
performance than the conventional control schemes.

The remaining part of this paper is organized as follows.
Section II describes the formulation of the HEMS on the
basis of MPC with receding horizon prediction and opti-
mization. Section III investigates the prediction of the home

Fig. 1. Variables used for the formulation of HEMS.

power load. In Section IV, the prediction scheme of future
vehicle state sequence is developed based on the statistical
data of daily vehicle use and DP over semi-Markov model.
Section V explains about the experimental testbed, which
integrates the prediction, optimization, and implementation.
Section VI provides discussions on the robustness of the
proposed HEMS against the modeling and prediction error.
The economic benefits are also discussed. The conclusions
are made in Section VII.

II. FORMULATION OF HEMS ON THE BASIS OF MPC

A. Definition of Variables and Parameters

As shown in Fig. 1, a household is supposed to have N EVs
and PHVs in total and a PV generator. In our formulation,
one day is divided by a sampling time �t into T steps,
where �t is 30 [min] and T is 48. The definition of variables
and parameters in the HEMS for k = t, . . . , t + T − 1 and
j = 1, . . . , N are as follows.

W̃+(k|t)≥ 0 Home power load (electric power con-
sumed in home) at time k predicted
at t (W).

W̃−(k|t)< 0 Electric power generated in home at time
k predicted at t (W).

γ̃ j (k|t)∈ {0,1} Binary-valued vehicle state indicating
whether the vehicle j is available in the
HEMS at time k predicted at t , where
γ̃ j (k|t) = 0 indicates that the vehicle is
connected to the home, and γ̃ j (k|t) = 1
indicates that the vehicle is used for
transportation.

B̃v,cons
j (k|t) ≥ 0 Consumed electric energy of vehicle j by

driving at time k predicted at t (Wh).
bv

j (k|t) ≥ 0 Electric energy of battery of vehicle j at
time k predicted at t (Wh).

pv
j (k|t) Charging or discharging electric power of

vehicle j at time k planned at t (W),
where pv

j (k|t) ≥ 0 indicates charge of the
in-vehicle battery and pv

j (k|t) < 0 indi-
cates discharge of the in-vehicle battery.

f +(t) > 0 Purchase price of electric energy
at t (Yen/Wh).

f −(t) > 0 Sale price of electric energy
at t (Yen/Wh).
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Bv,min
j (t)≥ 0 Lower bound of electric energy of battery of

vehicle j at t (Wh).
Bv,max

j > 0 Upper bound of electric energy of battery of
vehicle j (Wh).

Bv,init
j ≥ 0 Initial value of electric energy of battery of

vehicle j (Wh).
Wmax > 0 Upper bound of electric power in household

(W).
Wmin < 0 Lower bound of electric power in household

(W).
Jmax > 0 Upper bound of total electric energy in one

day in household (Wh).
Pv,char

j > 0 Upper bound of electric power for charging
the battery of vehicle j from home (W).

Pv,dis
j < 0 Upper bound of electric power for discharg-

ing the battery of vehicle j to home (W).
Pstandby ≥ 0 Standby power of power conditioner

system (W).
ηchar Coefficient of charge.
ηdis Coefficient of discharge.
ηpv Coefficient of photovoltaic generation.
ηacdc Coefficient of conversion between ac and dc.

In these definitions, the notation “ ˜ ” indicates a predicted
value. The HEMS uses the predicted profiles of electric
power consumed in household, W̃+(k|t) and vehicle state,
γ̃ j (k|t), B̃v,cons

j (k|t). The profile of electric power consumed in

household W̃+(k|t) is predicted based on standard AR model
[27], [28]. The prediction of vehicle state γ̃ j (k|t) is discussed
in Section III. On the other hand, it is assumed that PV power
generation W̃−(k|t) is known. Numerous studies have been
conducted that seek to predict PV power generation [29], [30].
Results of these studies are available in this paper.

In Section II-B, the optimization problem of charge/
discharge profile over one day is formulated by using these
parameters and variables.

B. Formulation of the Optimization Problem

The problem of scheduling a charge/discharge profile for
in-vehicle batteries to minimize the electricity costs can be
formulated as an MILP. The objective function, decision
variables, and constraint conditions are given by the following
problem statement.
Optimization of Charge of In-Vehicle Batteries:

Given {W̃+(k|t), W̃−(k|t), γ̃ j (k|t), B̃v,cons
j (k|t),

f +(k), f −(k), Bv,min
j (k|t), Bv,init

j }k∈{t,...,t+T−1},

find {pv
j (k|t)}k∈{t,...,t+T−1},

which minimize

Z =
t+T −1∑

k=t

F(k)W̃ (k|t)�t + α

t+T−2∑

k=t

N∑

j=1

D j (k|t),

F(k) =
{

f +(k) if W̃ (k|t) ≥ 0

f −(k) if otherwise
(1)

subject to

∀k ∈ {t, . . . , t + T − 1}
W̃ (k|t) = W̃+(k|t)+ ηpvW̃−(k|t)

+ηacdc
N∑

j=1

pv
j (k|t)+ Pstandby (2)

Wmin ≤ W̃ (k|t) ≤ Wmax (3)
t+T−1∑

k=t

W̃ (k|t)�t ≤ Jmax (4)

W̃+(k|t)+ ηacdc
N∑

j=1

pv
j (k|t)+ Pstandby ≥ 0 (5)

pv
j (k|t)γ̃ j (k|t) = 0, (6)

Pv,dis
j ≤ pv

j (k|t) ≤ Pv,char
j (7)

Bv,min
j (k|t) ≤ bv

j (k|t) ≤ Bv,max
j (8)

(Battery dynamics)

bv
j (k + 1|t) = bv

j (k|t)
+{1 − γ̃ j (k|t)}H pv

j (k|t)�t

−γ̃ j (k|t)B̃v,cons
j (k|t), (9)

H =
{
ηchar if pv

j (k|t) ≥ 0

ηdis if otherwise

D j (k|t) ≥ pv
j (k + 1|t)− pv

j (k|t) (10)

−D j (k|t) ≤ pv
j (k + 1|t)− pv

j (k|t). (11)

The objective function given by (1) is the summation of elec-
tricity costs, which is calculated by multiplying the predicted
net power W̃ (k|t) defined in (2) by a cost coefficient F(k).
F(k) is switched depending on whether the power is for
purchase or sale, i.e., whether W̃ (k|t) is positive or negative.
The HEMS obtains income from the sale of electric power
when W̃ (k|t) is negative, but the HEMS pays for electricity
when W̃ (k|t) is positive. Thus, the electricity cost is defined
as a signed cost of W̃ (k|t). The second penalty term in (1)
plays a role of reducing the frequent alternation of charging
and discharging electric power to mitigate the damage on the
in-vehicle battery lifetime. In (1), α is a weighting function,
and D j (k|t) has constraints given by (10) and (11). The
minimization of second penalty term with these constraints
is equivalent to minimization of |pv

j (k + 1|t)− pv
j (k|t)|.

Equation (3) provides the upper and lower bounds for
W̃ (k|t), which is specified by the request from power grid, i.e.,
an electric power company. Equation (4) is the upper bound
of consumed electric power for one day. These constraints
prevent excessive home power consumption.

Equation (5) prevents the stored power in the in-
vehicle batteries from backflowing to the power grid
because present regulation in some country (for exam-
ple, Japan) prohibits reverse power flow from batteries.
Note that ηacdc and Pstandby are constants that indicate
the conversion efficiency and standby power consumption
of the ac/dc and dc/dc converter units shown in Fig. 1,
respectively.
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Equation (6) is the constraint on the charge and discharge
of the in-vehicle battery in accordance with the vehicle state.
The battery can charge and discharge only when the vehicle is
at home (γ̃ j (k|t) = 0). Conversely, the battery cannot charge
and discharge at home when the vehicle is disconnected to the
home (γ̃ j (k|t) = 1).

Equation (7) represents the constraint on the charge and
discharge performances of the in-vehicle battery. Equation (8)
is the constraint on the electric energy of in-vehicle bat-
tery, where Bv,min

j (k|t) indicates the minimum electric energy
required at t .

Equation (9) represents the discrete dynamics of the electric
energy of in-vehicle battery bv

j (k|t). The efficiency of charge
and discharge in (9) is specified by different parameters
(ηchar and ηdis). As the result, the battery dynamics is rep-
resented by a switched linear dynamics. The real efficiency in
(9) may not be constant due to the change of the environment,
the lifetime of the battery, and so on. Consideration of these
nonlinear characteristics, however, results in complex nonlin-
ear optimization, and is not preferable for real-time imple-
mentation. The effect of modeling error of battery dynamics
is experimentally discussed in Section VI-A.

Note that most of the battery management unit often informs
the remaining electric energy as the state of charge (SOC). The
relationship between the remaining battery charge bv

j (t) and
SOC j (t) can be described by the following equation:

bv
j (t) = Bv,max

j × SOC j (t)

100
. (12)

Thus, the SOC j (t) is defined as a percentage of the bv
j (t)

over Bv,max
j . Since the SOC j (t) is not an accumulation of the

power, pv
j (t), (12) does not include the efficiency H in (9).

In this optimization problem, the objective function given
by (1) and the constraint given by (9) have logical branching.
By applying the technique used in a mixed logical dynamical
system formulation [31] to this problem, the logical branching
can be converted into inequalities by introducing binary vari-
ables. As the result, this optimization problem is classified as
an MILP.

Detail of the transformation from logical branching in (1)
to inequalities are explained in the following. The branching
whether W̃ (k|t) is positive or not is represented by the binary
variable δ1(k) ∈ {0, 1} as follows:

{
[δ1(k) = 1] ↔ [W̃ (k|t) ≥ 0]
[δ1(k) = 0] ↔ [W̃ (k|t) < 0]. (13)

Here, an upper bound M1 and a lower bound m1 were set to
satisfy m1 ≤ W̃ (k|t) ≤ M1. The logical formula given by (13)
is equivalently expressed by the following inequalities:

{
W̃ (k|t) ≥ m1{δ1(k)− 1}
W̃ (k|t) ≤ (M1 + ε1)δ1(k)− ε1

(14)

where ε1 is a small positive number. Using δ1(k), the objective
function given by (1) is rewritten as

Z =
t+T −1∑

k=t

[ f +(k)W̃ (k|t)δ1(k)+ f −(k)W̃ (k|t){1 − δ1(k)}]�t .

(15)

Fig. 2. Flow of information processing in the proposed HEMS.

Here, this objective function is nonlinear, because W̃ (k|t)
and δ1(k) are both decision variables in this optimization
problem. To avoid the nonlinearity, the auxiliary variable z1(k)
is introduced, which is defined as z1(k) = W̃ (k|t)δ1(k). By
using z1(k), (15) is rewritten as follows:

Z =
t+T−1∑

k=t

[{ f +(k)− f −(k)}z1(k)+ f −(k)W̃ (k|t)]�t .

(16)

In addition, z1(k) = W̃ (k|t)δ1(k) is equivalently transformed
to the following linear inequalities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z1(k) ≤ M1δ1(k)

z1(k) ≥ m1δ1(k)

z1(k) ≤ W̃ (k|t)− m1{1 − δ1(k)}
z1(k) ≥ W̃ (k|t)− M1{1 − δ1(k)}.

(17)

As the result, the original objective function (1), which has
logical branching, is transformed to the one with binary
variable and linear inequalities. The transformed optimization
problem is solved as an MILP. Equation (9) is also transformed
in the same way.

In order to improve the robustness of HEMS against the
prediction and modeling errors, an MPC is exploited in this
paper, which is based on the receding horizon prediction and
optimization.

Fig. 2 illustrates a flow of information processing in the
proposed control system. This consists of four functions,
observation, prediction, planning, and control. The depicted
cycle is executed in every�t according to the receding horizon
manner.

III. PREDICTION OF PROFILE OF HOME POWER LOAD

A. Data Set of Home Power Load

Electricity consumption of over 60 houses have been
collected in the project of “Toyota City Low-Carbon
Society Verification Promotion Council,” for five years from
2010 to 2015 in Japan. In this paper, the data logging was
executed every 1 min. For the proposed HEMS, first of all,
the observed data of the home power load are preprocessed
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Fig. 3. Examples of home power load in four seasons. (a) Household
A consists of two adults. (b) Household B consists of four adults and
two children.

to calculate the average power load every 30 min, that is the
interval of one discrete time step �t .

For example, several profiles of the home power load for
24 h are shown in Fig. 3. The profiles in the left side and the
right side are obtained from households A and B, respectively.
The household A consists of two adults, and the household B
consists of four adults and two children. From top to bottom,
the profiles show the selected one day from different seasons,
winter, spring, summer, and autumn, respectively.

B. Prediction by Autoregressive Model

In this paper, an AR model is applied to prediction of future
home power load. Suppose that the current time is t , and the
past power load W+(t + 1 − r) (r ∈ {1, . . . , R}) are already
measured, the home power load W̃+(t + 1|t) at the next time
t + 1 is estimated as follows:

W̃+(t + 1|t) =
R∑

r=1

ϕr W+(t + 1 − r)+ εt+1 (18)

where ϕr (r ∈ {1, . . . , R}) are coefficients called AR parame-
ters, R is the order of the AR model, and εt+1 is the output
error at the time t +1. The parameters ϕr can be identified by
minimizing the output errors using the least-mean-squares or
Yule–Walker method in general.

1) Finding the Order of AR Model by AIC: In order to
decide the order of the AR model properly, an Akaike infor-
mation criterion (AIC) is used as an index [32]. The desirable
model is the one which shows the minimum AIC value over
the candidates of R for given data set. The AIC for AR model
is defined as follows:

AIC
def= n(ln(2πE)+ 1)+ 2(R + 1) (19)

where n is the number of data, and E is the average mean
square of the AR model after identifying the AR parameters
using the given data set. E is calculated as follows:

E = 1

n′
n′∑

�=1

ε2
� (20)

where n′ is the number of data used for identification.

Fig. 4. Orders of the AR models using the AIC for 25 households and
4 seasons. (a) Winter. (b) Spring. (c) Summer. (d) Autumn.

Fig. 5. Histogram of the order of the AR models.

As a preliminary experiment, the orders of AR models
were identified by the AIC for 25 households in the range
of 1 ≤ R ≤ 150 = Rmax. The AR model of home power
load prediction was built individually for each household and
season, wherein January, April, July, and October were chosen
as representative months. Each data set has 1440 data points
of the power load in consecutive time steps �t (=30[min])
for 30 days, which was observed in 2013. The desirable order
of the AR model for each household and season, which shows
the minimum AIC, is shown in Fig. 4. The vertical axis means
the index number of the 25 households and the horizontal axis
indicates the desirable order of the AR model defined by AIC.
In addition, the histogram of the desirable order of AR models
defined by AIC is shown in Fig. 5. These figures show that
more than 90% of models have the order of R = 48 as the
desirable one. In fact, we have found a strong autocorrelation
between the home power loads W+(t) and W+(t − 48). This
comes from the periodic behavior of the home power load
with a cycle of one day (48 steps). In general, the order of
AR model should be defined individually for each household
and season by referring the AIC. However, if there is no
information on the home power load, the order of AR model
R should be set to be 48.

2) Identified AR Parameters: As identification examples,
AR parameters of the household no. 2 in the four seasons and
the household no. 19 in the spring season are listed in Table I.
To increase the understandability, this table displays only
parameters which are greater than 0.05 or less than −0.05. As
we can see, there are common characteristics in all AR models
as follows: ϕ1, ϕ2, ϕ47, and ϕ48 take relatively large values.
This implies that the power load of W+(t), W+(t − 1),
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TABLE I

AR PARAMETERS FOR HOUSEHOLDS NO. 2 AND NO. 19

W+(t−47) and W+(t−46) play important roles for prediction.
W+(t) is the current power load, W+(t −1) is the latest power
load, i.e., 30 min before, W+(t − 47) is the power load one
day before from the time t +1 (target time of prediction), and
W+(t − 46) is the power load one day before from the next
time t + 2. Thus, the prediction of home power load basically
uses the periodic characteristics of the home power load with
the cycle of 24 h.

Despite the common characteristics in the structure of the
AR model, the AR parameters take different values depending
on household and season. This implies that the description
performance of the AR model is not so powerful. Therefore, it
is highly recommended to use different AR models according
to the environmental condition. The use of multiple AR models
will increase the prediction accuracy of the power load.

3) Cross Validation: The prediction error of the AR model
is verified with k-fold cross validation. The data used to
estimate the desirable order of AR model were divided into
30 subsets, i.e., each subset corresponds to the data of one day.
The subsets of the first three days were not used for the cross
validation. One subset was used for test and the remaining
subsets were used for identification of the AR parameters.
As the tests are carried out repeatedly for each subset in the
k-fold cross validation, then the cross validation was executed
as for 27 subsets from the 25 households and 4 seasons.

Fig. 6 shows the root mean squared errors (RMSEs) of
the AR models as the result of cross validation. The hor-
izontal axis represents the index number of the household.

Fig. 6. RMSE in cross validation for the prediction of home power load.
(a) Winter. (b) Spring. (c) Summer. (d) Autumn.

The average of RMSE for all of the tests is indicated by the
height of bar together with the error range, which expresses
the range between the maximum and minimum of the RMSEs.
The results show that the RMSEs are less than 500 W in almost
all cases except winter season. This is because the home power
load in winter is higher than the one in other seasons. Although
more complex prediction model may reduce the prediction
errors, the average of the errors in the AR model is acceptable
for the proposed HEMS.

4) Adaptation to the Proposed HEMS: In order to embed
the AR model into the proposed HEMS, a slight modification
must be made in (18). Since the receding horizon control needs
to predict the home power load for T steps ahead (T = 48), the
AR model needs to use the predicted values recursively instead
of measured values. In this case, the following modified AR
model must be used:

W̃+(t + τ |t) =
τ−1∑

r1=1

ϕr1 W̃+(t + τ − r1|t)

+
R∑

r2=τ
ϕr2 W+(t + τ − r2). (21)

Using the modified AR model (21), the predicted profile
of the home power load becomes available for the proposed
HEMS. Note that the trend of RMSE may increase as the
time progress if we use (21) for prediction. Even in this case,
however, the analyses shown in this section are effective.

IV. PREDICTION OF FUTURE VEHICLE STATE SEQUENCE

A. Statistics of Departure and Travel Time

For the prediction of future vehicle state γ (t), the sta-
tistics of departure and travel time (SDTT) is supposed to
be available at each household. The SDTT is described as
a frequency distribution table, as shown in Table II. The
frequency distribution table is generated by observing and
collecting the departure time and arrival time of the vehicle
every day. The column and the row express the departure and
travel times, respectively. Note that the travel time is calculated
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TABLE II

SDTT

by subtracting the departure time from the corresponding
arrival time. For example, the elements on the third row and
the fourth column indicates six, it implies that there were six
samples observed in the past that the vehicle left home at 7:30
and traveled for two steps (1 h) before returning home.

The number of columns is set to be T , which is the same
as prediction length in the MPC. In addition, the data whose
travel time exceeds T were excluded from the table. Therefore,
the number of rows was set to be T + 1. The travel time “0”
in the first row implies that the vehicle was connected to the
home, i.e., was available for HEMS.

B. Semi-Markov Model for Vehicle State Prediction

One of the most promising scenarios for the prediction of
the future vehicle state is to formulate the problem so as to
maximize the occurrence probability (score) of the predicted
profile of the vehicle state. Since the number of possible
vehicle state profile increases according to the increase of T ,
it is highly recommended to design the semi-Markov model,
which represents the information included in the SDTT, and
apply the search algorithm based on DP.

Here, let X (t) be a random variable which represents the
distribution of remaining travel time at t of the vehicle, i.e.,
the time until arriving at home. Also, let x(t) ∈ {0, 1, . . . , T }
be the realization of X (t) at time t . When the vehicle is
connected to the home, x(t) takes a value of zero. If the
vehicle leaves the home at t , the state x(t) = 0 transits to
the state x(t + 1) which takes some value between 1 to T .
This transition is defined stochastically from the SDTT.
Then, x(t + 1) decreases monotonically step by step, i.e.,
x(t + i) = x(t + i − 1)− 1. This state definition implies that
one of the vehicle states γ (t) = 1 is expanded to multiple
states x(t) = 1 ∼ T . The behavior of x(t) is expressed by a
left-to-right semi-Markov model shown in Fig. 7.

It is necessary to consider the states up to t + 2T , because
there is a case that the vehicle leaves home at t + T and
returns to home after T -steps travel at most. However, since
the departure time to be predicted is restricted in the range
of T steps (one day) from the present time, the states after
t + T have no transition from x(τ ) = 0 (τ ≥ t + T ) to the
other states except for x(τ + 1) = 0.

The next step is to design the transition probability and ini-
tial state probability in the semi-Markov model. The transition
probability from the state j to i at time t is described as

ai j (t) = P(X (t + 1) = i |X (t) = j). (22)

Fig. 7. Left-to-right semi-Markov model of a remaining travel time.

Note that the transition probability is a time varying parameter.
This transition probability can be defined from the SDTT as
follows.

Let cnm be an element of the SDTT at nth row and mth
column (see Table II). At first, the transition probability from
state x(t) = 0, i.e., ai0(t) is calculated as follows:

ai0(t) = cτ i

T∑

i=0

cτ i

τ = t mod T (23)

where τ is the time index in Table II. Once the vehicle state
takes a nonzero value (vehicle leaves home), the remaining
travel time to the home decreases monotonically step by step.
Therefore, other state transition probabilities ai j (t) for j > 0
are defined as

ai j (t) =
{

1 i = j − 1

0 i 	= j − 1.
(24)

Since the vehicle state prediction is executed in receding
horizon manner, i.e., the vehicle state prediction is updated at
every control cycle based on the new observation, the initial
state probability of the semi-Markov model must be updated
at every step. Let πxt be the initial state probability of the state
xt ∈ {0, 1, . . . , T } at t . In the case that the vehicle is connected
to the home at t , i.e., γ (t) = 0, the remaining travel time xt

must be zero. Therefore

πx(t)=0 = 1

πx(t) 	=0 = 0. (25)

On the other hand, in the case that the vehicle is not connected
to the home (used for transportation), i.e., γ (t) = 1, the initial
state probability at t can be calculated based on the latest
departure time s0 (s0 < t). This is obvious because the current
initial state probability can be calculated using the information
on the latest departure time of the vehicle. Note that the actual
departure of the vehicle occurs between s0 − 1 and s0. As the
result, in the case that the vehicle is not connected to the
home, i.e., γ (t) = 1, the initial state probability at t and πx(t)
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is calculated as

πx(t) = P(X (s0 − 1) = 0

X (s0) 	= 0, X (s0 + 1) 	= 0, . . . , X (t) 	= 0)

=

⎧
⎪⎨

⎪⎩

a(i+t−s0)0(t)∑T
j=t−s0

a j0(t)
, 0 ≤ i ≤ T − t + s0

0 T − t + s0 < i ≤ T .

(26)

Finally, note that the occurrence probability of the path from
x(t +T ) = i to x(t +2T ) = 0 (accepted stated) is equal to one
because each path from the state x(t + T ) = i to the accepted
state x(t + 2T ) = 0 is deterministic.

C. Finding of Most Likely State Sequence by
Dynamic Programming

The most likely future state (remaining travel time)
sequence can be found by applying DP thanks to Markov
characteristics described in the last section. The prediction
problem is now formulated as follows.
Prediction of the Remaining Travel Time:

Given : s0, γ (t), {ai j (t)}i, j∈{1,...,T }
find : x(t), . . . , x(t + T ), . . . , x(t + 2T )

which maximize :
J = P(X (t) = x(t), X (t + 1) = x(t + 1) . . . ,

X (t + T ) = x(t + T ), . . . , X (t + 2T ) = x(t + 2T )).

(27)

This prediction is executed at every control cycle, i.e., every
30[min]. The cost function (27) can be rewritten by using
parameters in semi-Markov model. Then, the best score J ∗ is
defined as

J ∗ = max
x(t),...,x(t+T )

[πx(t)ax(t+1)x(t)(t)ax(t+2)x(t+1)(t + 1) · · ·
ax(t+T )x(t+T−1)(t + T − 1)]. (28)

This maximization can be decomposed as follows:
J ∗ = max

x(t+T )
ax(t+T )x(t+T−1)(t + T − 1)

∗
{

max
x(t),...,x(t+T−1)

[πx(t)ax(t+1)x(t)(t)ax(t+2)x(t+1)(t+1)

∗ · · · ax(t+T−1)x(t+T−2)(t + T − 2)]
}
. (29)

Here, the following variables are introduced:
δ(τ, x(τ ))

=
{
πx(t) τ = t
max

x(τ−1)
[δ(τ − 1, x(τ − 1))ax(τ )x(τ−1)(τ − 1)] τ ≥ t+1

(30)

and for τ ≥ t + 1

ψ(τ, x(τ )) = arg max
x(τ−1)

[δ(τ − 1, x(τ − 1))ax(τ )x(τ−1)(τ − 1)].
(31)

Fig. 8. Examples of SDTT corrected from households wherein the vehicle
is mainly used for (a) and (b) commutation to office and (c) and (d) shopping
and pickup. Note that the scale of vertical axis, frequency, is different graph
by graph.

By substituting (30), (29) is expressed as

J ∗ = max
x(t+T )

[ax(t+T)x(t+T−1)(t + T − 1)

∗ δ(t + T − 1, x(t + T − 1))]. (32)

This implies that J ∗ can be calculated recursively from τ = t
to τ = t +T . The final state x∗(t +T ) is found in the recursive
calculation of J ∗ as follows:

x∗(t + T ) = arg max
xt+T

[ax(t+T)x(t+T−1)(t + T − 1)

δ(t + T − 1, x(t + T − 1))]. (33)

The states after t + T are generated by

x∗(τ + 1) =
{

x∗(τ )− 1 x∗(τ ) 	= 0
0 x∗(τ ) = 0

(34)

for τ ≥ t + T . The most likely states before t + T can be
found by the following backward calculation:

x∗(τ ) = ψ(τ + 1, x∗(τ + 1)) t ≤ τ ≤ t + T − 1. (35)

As the result, the most likely state sequence x∗(t + i)
(i = 0 ∼ 2T ) can be obtained. Once x∗(t + i) (i = 0 ∼ 2T )
is obtained, it can be transformed to the most likely vehicle
state sequence γ ∗(t + i) (i = 0 ∼ 2T ) by using

γ ∗(t + i) =
{

0 if x∗(t + i) = 0
1 if x∗(t + i) = 1 ∼ T .

(36)

D. Evaluation of Vehicle State Prediction

Fig. 8 shows the examples of SDTT corrected from exam-
inees who use a vehicle for her/his daily life. Note that
the frequency data whose traveling time is zero are omitted
for visibility. The data were corrected for 27 months from
30 examinees by equipping GPS loggers on their vehicles.
The examinees are categorized into two groups based on
their purpose to use the vehicle, for commuting to office
or for other purposes like shopping and picking up a child.
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Fig. 9. HEMS experimental testbed used to test the proposed control scheme,
each component is scaled down by a factor of 3.

TABLE III

SPECIFICATIONS OF THE HEMS EXPERIMENTAL TESTBED

The SDTTs [Fig. 8(a) and (b)] are corrected from two exam-
inees who use the vehicle mainly for commute to office, and
[Fig. 8(c) and (d)] are from two examinees who use the vehicle
for other purposes. Generally speaking, one who uses the
vehicle with regularity has peaks on her/his SDTT, and is easy
to predict her/his use of vehicle.

The proposed prediction method was evaluated based on
accuracy rate. The accuracy rate is calculated as agreement
rate of PDTTs between prediction and observation. In this
calculation, the data of 24 months was used for learning
the parameters in the semi-Markov model and the remaining
3 month data was used for evaluation. The mean value of
accuracy rate of 30 examinees was 0.77 and the standard
deviation was 0.22. The accuracy rate of 0.77 which is much
larger than 0.5 implies the validity of proposed prediction
method. In addition, the update mechanism of the prediction
model based on the automatic update of the statistical data
improves the accuracy rate of the prediction.

V. VERIFICATION BY HEMS EXPERIMENTAL TESTBED

A. Experimental Setup

The proposed control scheme is implemented on the HEMS
experimental testbed shown in Fig. 9. The specifications of the
testbed are listed in Table III. This testbed consists of several
physical simulators to represent the PV generation, home load,
and in-vehicle batteries. The electrical characteristics of all
components are scaled down by a factor of three from those
of actual components. In this testbed, a single vehicle (EV) is
considered, which can only be charged or discharged when it

TABLE IV

PARAMETER SETTING

is connected to the home. Departure and arrival of the vehicle
are realized by disconnecting and reconnecting the physical
simulator of the in-vehicle battery. Energy consumption of the
EV while driving is simulated by extracting power from the in-
vehicle battery by using an electronic resistance. The control
architecture for this testbed has two-layered structure [8]. The
first layer, where the algorithm in Section II is implemented,
decides the optimal charge/discharge plan for the in-vehicle
battery to reduce the daily electricity cost. The second layer
consists of a dc/dc converter and an ac/dc inverter. This layer
adopts the voltage-based droop control principle [33], [34],
and can maintain the instantaneous supply–demand balance
even if there is a mismatch between the plan and the actual
situation caused by the prediction and modeling errors.

The parameters defined in the formulation given in
Section II are listed in Table IV. According to the rate plan
provided by a local power company [35], the purchase price
f +(t) of power from the power grid varies with time, as shown
in Table IV. The sale price f −(t) of power to the power grid
is fixed at 48 Yen/kWh. As mentioned in Section II, the MPC
cycle (�t) was set to be 30 min, and continuously operated.

B. Data Used for Prediction

Fig. 10 depicts the actual (thick line) and predicted
(thin lines) home load by using AR model with 48th order at
each control step. The actual home load is the one observed
in a household in the “Toyota city project” on a weekday
in winter. The receding horizon prediction results predicted
at 4:00, 5:00, 6:00, 7:00, 8:00, 12:00, 16:00, and 20:00
are depicted. As a whole, although errors exist between the
prediction and actual value especially when the home load is
high, the 48th order AR model can successfully predict the
home load by receding horizon manner. In order to improve
the prediction performance, the parameters of AR model must
be adaptively switched according to change of day of the week,
weather, season, and so on.
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Fig. 10. Predicted home power load at each control step (thin lines) and
actual home power load (thick line).

As for the prediction of vehicle state, the data where the
vehicle is mainly used for commute to office (see Section IV)
were used as the SDTT.

VI. RESULTS AND DISCUSSION

A. Effectiveness of MPC

The benefits of using MPC are: 1) its robustness caused by
a feedback mechanism underlying the MPC and 2) consid-
eration of many important constraints. In this section, some
experimental results are shown and discussed mainly focusing
on the robustness. Note that the prediction error of the home
load shown in Fig. 10 is considered in all experiments, which
is caused by the limitation of the accuracy of the AR model.
A commercial software CPLEX was used to solve MILP in
all experiments.

1) Case of Existence of Prediction Error in Battery SOC:
The SOC of in-vehicle battery is an important variable for
optimization because charge/discharge of in-vehicle battery
is highly dependent on the SOC of the battery. Therefore,
it is critical to precisely estimate the SOC on the basis of
the battery model. Herein, a simple switched linear model
has been adopted in Section II [see (9)] for estimation of
the SOC in order to reduce the computational burden. This
model tends to achieve low precision for SOC estimation,
because most batteries demonstrate nonlinear charge/discharge
characteristics depending on the environmental conditions.
Figs. 11 and 12 show the scheduled and actual results of
charge/discharge of the in-vehicle battery and SOC based on
the single prediction and optimization executed at 4:00 in
the cases of α = 0 and α = 0.01 [see (1)], respectively.
Figs. 13 and 14 show the scheduled and actual results with
MPC, i.e., the prediction and optimization are updated every
30[min] in the cases of α = 0 and α = 0.01, respectively.
Both results are obtained under the perfectly predicted scenario
as for the vehicle state. The EV is away from home during
the hours 11:00–17:00. In Fig. 11(a), the charge/discharge
profile of the in-vehicle battery for all 48 time steps was
determined at the first time step, and executed. We can see
that the errors between the estimated SOC and actual SOC
are increasing with time because of modeling error of battery
dynamics. During the hours 18:00–0:00, the battery’s actual
capacity for useful discharge remained unutilized, because the
estimated SOC has dropped to the lower limit [Fig. 11(b)].

Fig. 11. Results based on single prediction and optimization executed at 4:00
in the case of α = 0 and prediction error in battery SOC. (a) Charge/discharge
profile of in-vehicle battery (charge: positive and discharge: negative).
(b) Profile of battery SOC (actual and prediction at 4:00).

In the results with MPC [Fig. 13(a) and (b)], the estimated
SOC is updated by measurements at each control step. Accord-
ing to the receding horizon prediction and optimization based
on the updated information on the battery SOC, the in-vehicle
battery becomes available for discharge during the hours
18:00–0:00 [Fig. 13(a)]. These results verify the robustness
of MPC against the modeling error of battery dynamics.

Note that frequent alternation of charging and discharging
appears in Figs. 11 and 13. This is because the charge and
discharge efficiencies of the in-vehicle battery (see Table IV)
were set to be high values, which had less impact on the energy
loss. On the other hand, we can see that frequent alternation
of charging and discharging can be effectively reduced in
Figs. 12 and 14 in comparison with Figs. 11 and 13 by
considering the penalty term in (1). It is also possible to reduce
the frequent alternation by raising ηdis or lowering ηchar .

2) Case of Existence of Prediction Error in Vehicle State:
The availability of the in-vehicle battery directly affects on
the performance of the HEMS for electricity cost reduc-
tion. Poorly predicted vehicle state sequence can lead to
degradation of cost reduction performance. With MPC, the
prediction of vehicle state sequence was updated by the
sensing information (whether the EV is connected to home).
Fig. 15(a) and (b) shows the results of prediction and schedul-
ing based on the single prediction and optimization at 4:00
(α = 0). Fig. 16(a) and (b) shows the results of prediction and
scheduling with MPC, i.e., the prediction and the optimization
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Fig. 12. Results based on single prediction and optimization executed
at 4:00 in the case of α = 0.01 and prediction error in battery SOC.
(a) Charge/discharge profile of in-vehicle battery (charge: positive and dis-
charge: negative). (b) Profile of battery SOC (actual and prediction at 4:00).

TABLE V

DAILY ELECTRICITY COST (YEN) FOR CASES 1 TO 3

are updated every 30[min] (α = 0). In Fig. 15(b), the
charge/discharge profile of the in-vehicle battery is scheduled
on the basis of the predicted vehicle state sequence at 4:00, as
shown in Fig. 15(a). According to the prediction, the EV would
be away from home during the hours 17:00–19:00, and the in-
vehicle battery was scheduled not to charge/discharge during
this period even though the EV was actually at home and
available for power storage. In the results with MPC shown
in Fig. 16(b), the prediction of vehicle state was updated at
11:30 as shown in Fig. 16(a) by sensing the information on
availability of the EV. According to the rescheduled plan,
which is updated based on the updated prediction of vehicle
state, the in-vehicle battery became available for charge or
discharge during the hours 17:00–19:00. These results verify
the robustness of MPC against the prediction error.

B. Economic Benefits of the Proposed HEMS

In order to evaluate the economic benefits of applying the
proposed HEMS, the daily electricity cost is considered for
evaluation. Herein, the electricity cost for one day is defined
as the cost of purchasing power from the power grid minus

Fig. 13. Results with MPC (receding horizon prediction and optimization) in
the case of α = 0 and prediction error in battery SOC. (a) Charge/discharge
profile of in-vehicle battery (charge: positive and discharge: negative).
(b) Profile of battery SOC.

the benefits of selling power to the power grid. For com-
parison, the daily electricity costs under different conditions
represented by three cases are investigated. In case 1, the EV
was used strictly as a vehicle and provided no benefit for
energy management. In case 2, the EV served a dual purpose
of transportation and storage for the HEMS. The EV was
used during the hours 8:00–19:00 (i.e., EV was connected
to home for 13 h). Case 3 is similar to case 2, wherein the
EV was used for driving during the hours 11:00–17:00 (i.e.,
EV was connected to home 18 h). The availability of the in-
vehicle battery in case 3 is higher than that in case 2. For
simplicity, it is assumed that the actual home load and the PV
output were equivalent for all three cases. The comparison
of results of the daily electricity cost for three cases is
shown in Table V. In this comparison, the price profiles
f +(t) and f −(t) shown in Table IV were used.

In the case of α = 0, the daily electricity costs for cases 1–3
were 92.7, 90.1, and 39.5 Yens, respectively. Compared with
case 1, the daily electricity cost was reduced by 3% and 57%
for cases 2 and 3, respectively. In cases 1 and 2, the amounts
of PV power sold to the grid are practically equivalent because
of the absence of a storage battery during the period of PV
output. However, the purchase cost in case 2 is lower than
that in case 1, because the power purchased from the power
grid was shifted from the high-priced period to the low-priced
period by the HEMS using the in-vehicle battery as power
storage in case 2. Compared with case 2, the higher availability
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Fig. 14. Results with MPC (receding horizon prediction and optimization) in
the case of α = 0.01 and prediction error in battery SOC. (a) Charge/discharge
profile of in-vehicle battery (charge: positive and discharge: negative).
(b) Profile of battery SOC.

of the in-vehicle battery in case 3 provided greater opportunity
for battery discharge to achieve higher sale benefit.

In the case of α = 0.01, the daily electricity costs
for cases 1–3 were 92.7, 92.6, and 49.1 Yens, respectively.
A similar trend as the results of α = 0 can also be found.
However, the daily electricity costs of cases 2 and 3 in the case
of α = 0.01 are higher than those in the case of α = 0 due to
reducing the degree of freedom in charging and discharging
of the in-vehicle battery.

C. Discussion

1) One of the advantages of the MPC is to take into
consideration the several constraints, which is generally
not easy in the conventional feedback control schemes.
On the other hand, it is very important to design the
constraints carefully so as to find a feasible solution at
any time. For example, the minimum SOC Bv,min

j must
be specified under the consideration of emergent use of
the vehicle. In general, Bv,min

j for PHV can be set to be
smaller than that for EV.

2) If there exists a huge amount of prediction error in the
power load and/or vehicle state, the MPC may not work
well. This is also the case that some emergency events
and/or urgent vehicle use by the user happen. The
proposed scheme, however, is likely to be able to keep
the overall system stable thanks to the two-layer control
structure (i.e., upper level: MPC and lower level: droop

Fig. 15. Results based on single prediction and optimization executed
at 4:00 in the case of α = 0 and prediction error in vehicle state. (a) Profile
of vehicle state predicted at 4:00. (b) Charge/discharge profile of in-vehicle
battery (charge: positive and discharge: negative).

control, see Section V-A), because the lower level con-
troller is designed to maintain the instantaneous supply–
demand balance at any time. This is also effective for
the case that unreasonable constraints are specified.

3) The electricity price profile was supposed to be given
a priori, and the selling and buying prices are different.
This is common in Japan and some other countries,
which try to accelerate the penetration of renewable
energy. The fusion of the proposed HEMS with real-
time pricing systems like day ahead or hour ahead
power market will lead to a development of HEMS
aggregator, which takes a balance of requirements of
both each household and grid.

4) Battery performance is strongly dependent on aging
and temperature. Both factors can be taken into account
in the proposed control system framework. The aging
of the in-vehicle battery can be modeled by adjusting
Bv,max

j . If the capacity of in-vehicle battery is reduced
due to aging, we should gradually decrease Bv,max

j
to express the effect of aging. Note that the rate of
decreasing Bv,max

j can be much slower than the control
rate of HEMS. As for temperature, the performance
variation caused by temperature can also be modeled
by adjusting Pv,char

j and Pv,dis
j . For example, if the

ambient temperature around the battery is high, we
should decrease the magnitudes of Pv,char

j and Pv,dis
j

to mitigate the damage on battery health.
5) In this paper, only the best scored vehicle state sequence

was exploited for the MPC. However, in our framework,
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Fig. 16. Results with MPC (receding horizon prediction and optimization)
in the case of α = 0 and prediction error in vehicle state. (a) Profile of
vehicle state updated at 11:30. (b) Charge/discharge profile of in-vehicle
battery (charge: positive and discharge: negative).

other high-scored sequences such as the second and/or
third best scored vehicle state sequences are also
available for the MPC. In this case, the MPC may
have a possibility to find better charging profiles than
the case of considering only the best scored one. This
deserves to be considered particularly if there is no
big difference in the occurrence probability among the
high-scored sequences.

VII. CONCLUSION

This paper has presented HEMS which integrates a predic-
tion of future vehicle state and home load, optimization of the
charge/discharge profile of the in-vehicle batteries, and real-
time execution by using MPC framework. One of our main
concerns was the development of prediction scheme of future
vehicle state sequence, which can be naturally embedded in
the MPC control framework. This was achieved by using DP
over semi-Markov model which is designed based on statistical
data of daily vehicle use. In order to minimize the daily home
electricity costs, the proposed HEMS schedules the charge
and discharge of the vehicle batteries in receding horizon
manner. From the implementation of the proposed scheme
on the HEMS experimental testbed, the following issues have
been verified: 1) integration as the MPC, i.e., integration of
prediction, optimization, and execution of charge/discharge of
EV batteries under realistic constraints has been successfully
made and executed in real time; 2) thanks to the receding
horizon scheme, the proposed HEMS has robustness against
the modeling and prediction error, such as battery dynamics,

home load, and vehicle state; and 3) the proposed HEMS has
economic potential benefits. The improvement of prediction
scheme and the fusion of the proposed HEMS with real-time
pricing systems will be our future works.
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