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Design of Simultaneously Stabilizing Controllers
and Its Application to Fault-Tolerant Lane-Keeping

Controller Design for Automated Vehicles
Shashikanth Suryanarayanan, Member, IEEE, Masayoshi Tomizuka, Fellow, IEEE, and Tatsuya Suzuki, Member, IEEE

Abstract—Simultaneous stabilization deals with the following
question: given a finite number of LTI plants 1 2 does
there exist a single LTI controller such that each of the feedback
interconnections ( ) ( = 1 2 ) is internally stable?
This paper presents a new methodology for the design of simulta-
neously stabilizing controllers for two or more plants that satisfy
a sufficient condition. A classic result from simultaneous-stability
theory is invoked to cast the sufficient condition as a linear matrix
inequality (LMI). It is shown that in this setting, the problem of de-
sign of simultaneously stabilizing controllers can be reduced to that
of a standard control problem. The technique developed is
applied to the design of a fault-tolerantcontroller for lane-keeping
control of automated vehicles. The controller makes the system in-
sensitive to a failure in either one of two lateral error measuring
sensors used for lane-keeping control. Experimental results con-
firm the efficacy of the design and reinforce analytical predictions
of performance.

Index Terms—Automated highways, fault tolerance, H-infinity
control, linear matrix inequality (LMI), simultaneous stability.

I. INTRODUCTION

OVER the last two decades, the problem of simultaneous
stability has received considerable attention. The problem

(LTI case) reads as: Given a finite number of linear, time-in-
variant (LTI) plants does there exist a single LTI
controller, , such that each of the feedback interconnections

is internally stable? Though simply
stated, this problem has been found to be extremely difficult to
solve for the general case.

The simultaneous-stability problem can be interpreted as a
robust control problem where the uncertainty in the plant is de-
scribed in a finite way. Finite descriptions of uncertainty appear
naturally in practical situations. For example, the systems may
represent a nominal system and many of its failed modes [1], a
system that has several operating points [2] or a multivariable
system with possible loss of sensors or actuators [3]. We refer
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the reader to the monograph by Ackermann [2] for many more
illustrative examples of applications of simultaneous stabiliza-
tion.

The first explicit statement of the problem of finding neces-
sary and sufficient conditions for the existence of a simultane-
ously stabilizing controller was made by Saeks and Murray [4].
Necessary and sufficient conditions for the existence of a simul-
taneously stabilizing controller for two plants were developed
by Vidyasagar and Viswanadham [5] (also by Saeks and Murray
[4] for single-input-single-output (SISO) plants). However, the
problem of finding necessary and sufficient conditions for the
existence of simultaneously stabilizing controllers for three or
more plants remained unsolved for more than a decade. In a
series of papers in the early 90s [6]–[8], Blondel showed that
the problem of determining necessary and sufficient conditions
for simultaneous stability of three or more plants is undecidable
through rational operations on the coefficients of the polyno-
mials in the transfer functions that describe the LTI plants. These
papers by Blondel virtually brought the search for (tractable)
necessary and sufficient conditions for simultaneous stabiliz-
ability of three or more plants to a standstill.

Throughout the development of the theory of simultaneous
stabilization, few efforts have focused on the design of simul-
taneously stabilizing controllers. To name a few, Khargonekar
et al. [9] and, subsequently, Francis and Georgiou [10], showed
how periodic controllers could be utilized for simultaneous sta-
bilization. Kabamba and Yang explored the use of generalized
sample hold functions (GSHF) functions [11] to address the
problem of design of simultaneously stabilizing controllers.
However, design techniques developed thus far have either
yielded impractical controllers or controllers that are difficult
to implement.

This paper addresses the issue of design of simultaneously
stabilizing controllers. A new sufficient condition for simulta-
neous stability is developed which lends itself naturally to a
convex optimization-based formulation of the design problem.
As an application example, the paper also presents the design of
a fault-tolerantlane-keeping controller for automated vehicles.
We wish to clarify here that, by fault tolerant, we mean a con-
troller which is insensitive to the “loss” of one of the sensors
used for lane-keeping control. We will elaborate on this notion
later in the paper.

The paper is organized as follows. Section II discusses the
central contribution of this paper, namely, a technique for the de-
sign of simultaneously stabilizing controllers. Section III elab-
orates the link between simultaneous stability and fault-toler-
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antsystem design. In Section IV, the design technique developed
in Section II is applied to the lane-keeping control problem for
automated vehicles. This section features

• description of the lateral-control system onboard experi-
mental vehicles used in the California-PATH1 automated
highways initiative;

• description of the vehicle lateral control problem and its
intricacies;

• statement of the fault-tolerant control-design problem
under consideration;

• experimental results of applying the design procedure de-
veloped in Section II.

The most significant contribution of the paper is the develop-
ment of a technique for the design of simultaneously stabilizing
controllers which also satisfies a closed-loop performance mea-
sure. It is shown that for a certain class of plants, the problem can
be cast as a standard design problem. Included is a convex
optimization-based step by step procedure for the design of si-
multaneously stabilizing controllers.

II. SIMULTANEOUS STABILIZATION

In this section, we present the following:

• key results from the theory of simultaneous stabilization
(which are of relevance to this paper);

• new methodology for the design of simultaneously sta-
bilizing controllers. This methodology is based on ex-
pressing the requirement for simultaneous stability as a
linear matrix inequality (LMI); the LMI condition is used
to cast this problem as a standard control problem.

A. Notation and Preliminaries

Complex Plane

• , are the sets of real and complex numbers. is the
point at infinity.

• and are the real and imaginary parts of complex
numbers.

• .
Sets of Functions

• : set of proper real rational functions in the variable
. For short, we will use the symbol to represent .

• : set of proper real rational functions with no poles in
. The set is the set of stable rational functions. For

short, we will use the symbol to represent .
• : set of stable rational functions such that for

every , . For short, we will
use the symbol to represent .

Definition 1: If , u is termed unimodular.
Coprime Factorizations over
Definition 2: If , , and there exist , such

that , then the pair ( , ) is called coprime over
the set .

Definition 3: Given , suppose that , are
coprime in the sense of Definition 2, and , then the
pair ( , ) is called a coprime factorization of over .

Lemma 1: Every has a coprime factorization over .

1Partners for Advanced Transit on Highways, USA.

Fig. 1. Feedback interconnection.

Feedback Structure and Stability
Definition 4: Given , , the term feedback intercon-

nection refers to the interconnection shown in Fig. 1.
Definition 5: Given , , the feedback interconnection

( , ) is said to be well posed if and only if each of
, , and

belongs to .
Definition 6: Given , , the feedback interconnection

( , ) is said to be internally stable if and only if each of
, , and

belongs to .
Strong and Simultaneous Stability
Definition 7: is said to be strongly stabilizable if and

only if there exists such that the feedback interconnec-
tion ( , ) is internally stable.

Definition 8: are said to be simulta-
neously stabilizable if and only if there exists such
that each of the feedback interconnections , and

is internally stable.
Theorem 1 ([4]): Let , , , and represent poly-

nomials such that and represent two SISO LTI
systems and . Then and are simultaneously stabi-
lizable if and only if the following three conditions hold:

1) takes constant sign at all zeros of on the
real axis in ;

2) takes constant sign at all common poles of and
on the real axis in ;

3) two signs obtained above are the same.
Theorem 2 ([5], [12]): Let the coprime factorizations of the

two plants, , , over be

(1)

Then there exist , , , and such that

define

(2)

Then the class of all simultaneously stabilizing controllers
is given by

(3)
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In other words, and are simultaneously stabilizable if and
only if there exists a such that the feedback interconnec-
tion ( , ) is internally stable.

Normed-Vector Spaces
Definition 9: A norm on a vector space is a function

mapping , which for each satisfies:

1) if and only if ;
2) , for all scalars ;
3) , for all .

A vector space together with a norm is called a normed-vector
space and is denoted as ( , ).

Definition 10: Suppose is a normed-vector space. A se-
quence is a Cauchy sequence if, for each , there
exists such that ,

Definition 11: A normed-vector space is complete if every
cauchy sequence in it converges to an element in . Such a space
is referred to as a banach space.

Definition 12: A banach algebra is a banach space with a
multiplication operation defined for its elements mapping

satisfying the following properties:

1) algebraic properties:

(a) there exists an element such that
, for all ;

(b) , for all , , ;
(c) , for all , , ;
(d) for all , , and each scalar ,

.

2) Norm property: for all , , .

Proposition 1: The space of stable causal transfer-func-
tion matrices with the norm (defined as

) is a banach algebra.
Theorem 3: (“Small Gain”) Suppose is a member of the

banach algebra . If , then exists. Further-
more

(4)

Proof: See (for example) [13].

B. Design of Simultaneously Stabilizing Controllers:
A Special Case

Let be strictly proper SISO LTI systems. Then
there exist , , , and such that
and , . Define

and , , and
.

In this subsection, we consider the case where
for each . Under this assumption, we ob-
serve that if there exists a such that for each

, then are simultaneously sta-
bilizable. For if there exists such a , then from Theorem 3,

for each . It follows from
Theorem 2 that simultaneously stabilizes each of the plant

Fig. 2. Augmented plant for the design of Q.

pairs ( , ), and the simultaneously stabi-
lizing controller is constructed as

Specifically, we are interested in the following:

(5)

subject to , . The performance
is chosen to represent a disturbance-rejection problem where

represents the disturbance dynamics and is a frequency-
shaped weight on the controlled output. Note that the require-
ment for simultaneous stability is in the form of an LMI.

This problem can be treated as a standard problem
(Fig. 2). The augmented plant acts as the generalized plant and

as the stabilizing controller for the generalized plant. The
cost function to be minimized may be interpreted as the
norm from signal to .

The summary of the design procedure is as follows.

• Step 1: decide on coprime factorizations (over S) of
plants such that they yield stable ,

.
• Step 2: specify the weighting function and a model of

the disturbance dynamics .
• Step 3: find the solution for the above control

problem.
• Step 4: if for any , or if , modify

(for example, reduce the gain and/or cutoff frequency)
and go to Step 3.

Remark: It should be noted that the above procedure does
not guarantee a solution due to the following reasons.

1) In Step 1, it is assumed that we will be able to determine
appropriate coprime factorization representations to yield
stable . This is possible only in select situations. One
such example is discussed in Section IV.

2) The design procedure does not guarantee that the
stabilizing controller is itself stable. Therefore, it may be
the case that Step 3 returns an unstable . To overcome
this problem, a signal may be used to augment

. Then defining as ,
we solve the problem of minimizing the norm from

to . It can be argued that for small , this is not
significantly different from (5).
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III. FAULT-TOLERANT CONTROL AND

SIMULTANEOUS STABILITY

Since the early 70s, there has been an ever-increasing em-
phasis on the design of fail-proof automated systems. Auto-
mated-fault management, therefore, has evinced a lot of interest
both in industry and the academia.

Traditional approaches to fault management in automated
systems utilize fault detection and identification (FDI) strate-
gies followed by control reconfiguration rules to ensure safe
operation of the automated system (e.g., [14]). However,
this approach suffers from the drawback that the dynamic
system under control may grow to become unstable (or go
out of the range of sensor measurements) during the detec-
tion/reconfiguration process. Also, if the detection scheme is
designed for very quick detection of faults, it becomes more
susceptible to false alarms which renders the automated system
unavailable. These considerations have motivated research on
fault-tolerantcontrol design [15], [16] aimed at guaranteeing
stability and satisfactory performance of automated systems
when all components are in good working condition; as well as
scenarios when some of the components turn faulty.

Fault-tolerant control design deals with the problem of
designing controllers (if possible) that are insensitive to certain
chosen faults that might occur during system operation (this
implies that the controller is provided with the knowledge
of the model of the fault). Mathematically, let repre-
sent the linearized dynamics of a nonfaulty plant and let

represent linearized dynamics of all faulty
modes (associated with faults ) of operation
possible in the system. The fault-tolerant control problem is to
design a controller that simultaneously stabilizes each of the
plant pairs ( and ), where
optimizes a performance objective for the feedback interconnec-
tion ( , ). Such a controller would guarantee satisfactory
performance under nonfaulty operation and stability in the
event of a fault (assuming the dynamics are dictated by one of
the faulty modes ). Interpreted this way, it
is clear that the stabilization part of the fault-tolerant control
problem is a special case of the simultaneous-stability problem.

IV. FAULT-TOLERANT LANE-KEEPING CONTROL OF

AUTOMATED VEHICLES

In this section, we present a practical application of the design
procedure developed in Section II. First, we present the context
of lane-keeping control of vehicles, namely automated highway
systems. Then we describe the hardware components of the lat-
eral-control system on automated vehicles used in one such au-
tomated highway program. This will be followed by a note on
the vehicle lateral control problem and its associated intricacies.
We will then define the fault-tolerant control problem under
consideration. The design scheme based on simultaneous-sta-
bilization theory (presented in Section II) will then be invoked
to design the fault-tolerant lane-keeping controller. Low-speed
experimental results are included to corroborate the efficacy of
the design.

A. Automated Highway Systems and Lane-Keeping Control

Automated highway system (AHS) design has been under in-
vestigation over the last couple of decades as part of an effort

Fig. 3. Demo’97: I-15 lanes in San Diego, CA.

Fig. 4. Schematic of the lateral-control system developed by PATH.

to develop intelligent and efficient transportation systems for
the future. Several research initiatives around the world have fo-
cused on AHS development with varying degrees of automation.
In the US, PATH2 has been an active agency working on AHS
technology. In 1997, the National Automated Highway System
Consortium (NAHSC) conducted a demonstration on the I-15
lanes in San Diego, CA. Demo’97 showcased a prototype of a
platoon of fully-automated passenger vehicles and thus showed
that automated highways were a realistic policy option for the
future. Fig. 3 shows a photograph of Demo’97 in progress. For
a detailed description of the PATH AHS architecture, refer to
[17] and [18].

For obvious reasons, lane-keeping and lane-changing are crit-
ical operations that vehicles in an automated highway need to
perform. The lateral control system ensures that vehicles are
equipped with the capability to do so.

B. Lateral Control Hardware on PATH’s Passenger Cars

In this section, we describe the lateral control system devel-
oped as part of PATH’s automated highways initiative. Fig. 4
shows the schematic of this system. A magnet magnetometer-
based system is used to realize lane keeping. Magnets are laid
out along the center of lanes. The lane-keeping control problem

2Partners for Advanced Transit, California, USA, is a consortium aimed at
using advanced technologies for transit needs, http://www.path.berkeley.edu
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Fig. 5. Vehicle moving along a reference path.

then boils down to ensuring that vehicles follow the series of
magnets which represent the lane center line. The vehicles in
turn, have a set of sensors (referred to as magnetometers in the
rest of the paper) that measure the lateral deviation of their lo-
cation with respect to the magnets (road center line). The lat-
eral error information is processed by an onboard computer to
generate the steering angle required to follow the road center
line. PATH’s passenger vehicle hardware architecture consists
of two sets of magnetometers mounted under the front and rear
bumpers of the vehicle. Each magnetometer set consists of three
magnetometers. (Three magnetometers are used to increase the
range of measurement to about 0.5 m. The other sensors shown
in the Fig. 4 are used for lane changing and other purposes.)

C. Lateral Dynamics and Lane-Keeping Control

In this section, we present the salient features of the lateral
dynamics exhibited by front-wheel steered vehicles. The discus-
sion is presented in the context of lane-keeping control. Fig. 6
tries to capture the intuition behind the problem. The vehicle
can be regarded as an inertia moving forward. The job of lane-
keeping control is to ensure that this inertia follows the road
center line. This can be done by applying the appropriate lateral
forces to the inertia. The problem becomes complicated because
these lateral forces have to be generated through tire-road inter-
action (which depend primarily on the slip angle3 ).

1) Lateral Dynamics: We use the bicycle model for lane-
keeping control analysis and design purposes. In deriving the
bicycle model, the lateral vehicle motion is modeled as that of
a two-wheeled bicycle. (Fig. 5 depicts the model.) The major
assumptions made in deriving this model are:

• negligible roll and pitch;
• small steering angles;
• small relative yaw angles (refer to Fig. 5);
• lateral force on tire slip angle.

The attractions of the bicycle model are that it is simple and yet
captures the most relevant lateral dynamic characteristics. We
direct the reader to [19] and [20] for a more detailed description
of the bicycle model.

If the vehicle-longitudinal velocity is treated as a varying
parameter, the bicycle model yields linearized dynamics. The
transfer function from the steering input to the lateral ac-
celeration at the location of the sensor is

(6)

3Slip angle is the angle between the orientation of the tire and direction of
travel of the center of gravity (CG) of the tire.

Fig. 6. Block diagram for control model.

TABLE I
PARAMETERS USED IN THE BICYCLE MODEL

where

Table I describes the parameters used in the bicycle model and
their values used for design in this paper.

In the linearized setting, the transfer function captures
the tire-road interaction (refer Fig. 6). A system analysis of the
above model is presented by Patwardhan et al. [21]. It is ob-
served that the lateral dynamics change significantly with the
longitudinal velocity and the distance of the sensor from the
CG, (refer to Table I). In general, exhibits the following
properties:

1) increased phase lag with increase in longitudinal velocity
;

2) increased phase lead for larger ;
3) poorly damped zero pairs for smaller .
2) Lane-Keeping Controller Design: The above three prop-

erties of the lateral dynamics of vehicles govern the design of
the lateral controller. It is useful to consider the lateral control
system to be comprised of three principal components (Fig. 6),
which include a double integrator, a force generation mecha-
nism, , and the controller. Robust stability considerations
of the closed loop require that the open-loop characteristics have
sufficient phase margin around the gain cross over frequency.
The phase lead required to provide this phase margin around
the gain-crossover frequency has to be provided either by
or by the controller (the dual-roles concept; see Guldner et al.
[22]). From the behavior of , as explained above, it is clear
that at higher longitudinal velocities and small values of the
controller needs to provide large phase leads to provide suf-
ficient phase margin, which is difficult to achieve in practice.
Moreover, weakly damped zeros for small /high-longitudinal
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Fig. 7. Geometric look-ahead scheme.

velocities discourage high-gain control at high-longitudinal ve-
locities. The above two problems illustrate the inherent diffi-
culty and nontrivial nature of vehicle lateral control design at
high longitudinal velocities as those encountered on highways.

Large values of are impossible to realize physically since
it is infeasible to place the front set of magnetometers any fur-
ther from the front bumper of the vehicles. PATH engineers
developed an ingenious way of working around this problem.
They suggested a scheme such that if two independent lateral-
error measurements are made, then by geometrical extrapola-
tion (under some valid assumptions) one can construct the lat-
eral error at any location ahead of the vehicle. This second mea-
surement is obtained from the magnetometers mounted under
the rear bumper. This scheme used in Demo’97 has proved to
be immensely successful. Details of this scheme4 are discussed
in Guldner et al. [22]. In summary, for lane-keeping control at
high-speeds, larger values of lead to better yaw-rate damping
characteristics and, consequently, better ride comfort.

D. The Fault-Tolerant Lane-Keeping Control Problem

In recent years, PATH has been focusing more on AHS de-
ployment related issues. Therefore, safety and reliability be-
come key factors. In this context, it is desirable that the lane-
keeping controller, if possible, be made robust to failures that
may occur during prolonged operation of vehicles on automated
highways.

In this paper, we will discuss the problem of designing a
lane-keeping control algorithm (for passenger vehicles used in
the PATH program), which is robust to electrical disconnection
of one of the two magnetometers (front or rear). This scenario
may occur in the event of physical damage to the magnetome-
ters/wiring. We would like to add that this scenario has occurred
in the past during experimental testing. We model sensor discon-
nection as the output of the failed set of magnetometers going
to zero and remaining zero thereafter. (This model, of course, is
an approximation of reality but a reasonable one to work with).

E. Fault-Tolerant Lane-Keeping Controller Design

In this section, we will apply results from simultaneous stabi-
lization theory and Section II to the fault-tolerant lane-keeping
control problem. For the purposes of control design, we will
continue to adopt the geometric look-ahead-based control struc-
ture (see Fig. 7).

4Referred to as the geometric look-ahead scheme.

Fig. 8. Results of design of simultaneously stabilizing controller.

Let be the transfer function associated with the non-
faulty operation of the system. Let and be the transfer
functions associated with the situations corresponding to the
failure of the rear and front magnetometers, respectively. We
will now determine expressions for each of the above from the
bicycle model.

The state equation that describes the four-state bicycle model
for front-wheel steered passenger vehicles are

(7)

where (refer to Fig. 7 for variable definitions)
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Fig. 9. Rear magnetometer failure (around 22 s): low speed.

is the steering angle and is the curvature of the
road at the point on the road nearest the center of gravity. Table I
explains the symbols that are used in the above equations.

The lateral errors measured at the location of the magene-
tometers are

(8)

(9)

where , . , are distances
of the front and rear magnetometers from the vehicle CG.

For small relative yaw angles (Fig. 5) the error at the location
of the virtual sensor (which is at a distance from the vehicle
CG) is

(10)

For the loss of the front magenetometer the above
equation changes to

(11)



336 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 3, MAY 2004

and for the loss of the rear magenetometer the equa-
tion changes to

(12)

Then ,
, and

. The problem is to design a
simultaneously stabilizing controller that stabilizes ( , )
and ( , ).

Given coprimefactorization representations ( , ), ( ,
), and ( , ) (over ) of the transfer functions associated

with , and respectively, there exist , such that
, , 1, 2. Let , and be defined

as follows: ,
and . The design problem we are interested in
solving is

subject to , . The cost in the opti-
mization problem reflects the performance of the system under
no-fault operation (system dynamics governed by ). The
constraints captures the requirement for simultaneous stability
of the plant pairs and . It should be noted
that in this formulation we have assumed that , , and 2
are stable.

The weight represents a penalty on the effect of the distur-
bance on control performance (lateral error) and the disturbance
(road curvature). It is modeled as a first-order filter of the form

High-frequency components of the lateral-error measurement
are attributed to noise. This is because the vehicle dynamics are
slow and the road curvature is piecewise constant. Therefore,
the penalty on lateral error is set high only at low frequencies.

The transfer function represents disturbance dynamics. It
is modeled as

where , and .
The choice of the above model is motivated by the obser-

vation that lateral disturbances acting on the vehicle can be
transformed to equivalent curvature disturbances. The max-
imum magnitude of curvature disturbances is assumed to be
1/400 m (this is a harsh disturbance at highway speeds). Since
the road curvature does not change frequently on highways, we
choose a low-pass filter disturbance model.

Synthesis Results: First, we make the following interesting
observations.

Proposition 2: The pair of plants is simultane-
ously stabilizable if and only if { .

Proposition 3: The pair of plants is simultane-
ously stabilizable if and only if .

These propositions can be proven by a straight-forward ap-
plication of Theorem 1.

Fig. 10. Rear magnetometer failure (around 40 s): high-speed test.

Remark: Proposition 2 introduces a condition that represents
a tradeoff between fault-tolerant action and nonfaulty control
performance. To see this, note that this proposition implies that
in order to realize failure tolerance, the look-ahead distance
needs to be restricted to . In other words, the condition
for failure tolerance implies that look-ahead distance should be
restricted to within the physical limits of the vehicle. Our anal-
ysis from earlier indicates that small look-ahead distances imply
jittery control action and, therefore, contribute to poor no-fault
performance.

We now apply the design procedure developed in the last sec-
tion to the problem of design of a controller, which simulta-
neously stabilizes the pairs and for a
fixed-longitudinal velocity of .

For the purposes of this design, we choose the look-ahead
distance (a value less than ). We use the coprime
factorization representation from [23]and [24]. This choice re-
sults in , such that they yield stable and

. For the sake of completeness, we document the values here
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Fig. 11. Front magnetometer failure (around 5 s): low speed.

Note that

The results of the optimization process are summarized
in Fig. 8. The controller, , shown in this figure, is a re-
duced-order version of the controller synthesized by the opti-
mization scheme. The results show that sufficient conditions
for simultaneous stability are guaranteed. Interestingly, the re-
sulting controller, , has the familiar lead-lag rolloff charac-

teristics. The maximum lead provided action is about 90 in the
1–2 Hz region.

F. Experimental Results

In this section, we present results of experimental testing of
the above designed controller at low- and high-longitudinal ve-
locities. Four tests were conducted.

1) Low-speed test with rear magnetometer failure.
2) High-speed test with rear magnetometer failure.
3) Low-speed test with front magnetometer failure.
4) High-speed test with front magnetometer failure.
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During the tests, the failure is emulated. The magnetometer
output is manually set to zero at an arbitrarily chosen moment
to emulate the occurrence of a failure. The low-speed experi-
ments were conducted at the Richmond Field Station, CA, and
the high-speed tests were carried at Crows Landing, CA. (Note
that the low-speed experimental tests track at Richmond Field
Station has several sharp curves). Figs. 9 –12 are sample experi-
mental results for the aforementioned testing conditions. All the
experiments were conducted without making any road curvature
preview information available to the controllers.

We observe that under failure of the rear magnetometer
(Figs. 9, 10), satisfactory control action (small steering angles,
small lateral errors) can still be achieved. At high speeds, for
a value of 1.5 m, good control action can be achieved (on
the Buick LeSabre vehicles at PATH) up to about 55–60 mph.
For speeds higher than this, oscillations start to creep in and,
therefore, there is degradation in control performance.

Low-speed performance under failure of the front mag-
netometer (Fig. 11) is far from satisfactory. This is because
if the front magnetometer yields a zero output, the vehicle
is practically under the control of the rear magnetometer.
Suryanarayanan and Tomizuka show in [25] that rear magne-
tometer-based control of vehicles at low speeds is very difficult
to achieve and for practical purposes impossible. On the other
hand, Fig. 12 shows that at high speeds, though there is a
significant degradation in control performance, the system is
able to tolerate failure of the front magnetometer. In summary,
the system is able to tolerate failure of the front magnetometer
bank better at high speeds.

In all the above plots, it is useful to note the performance of
the fault-tolerant controller under no-fault conditions. Figs. 9
–12 show that the performance of the controller under no-fault
condition (prior to the introduction of the failure) is satisfac-
tory. On straight sections, the transient lateral error is main-
tained lesser than 5 cm, even at high speeds. At high speeds, ne-
gotiating a 800-m curve gives rise to transients of about 25-cm
lateral error. These figures are certainly acceptable in compar-
ison to the results published in [22], where a high-performance
controller was used. The performance of the fault-tolerant con-
troller shows a minor degradation in yaw damping.

V. SUMMARY AND FUTURE WORK

This paper presented a new approach for the design of simul-
taneously stabilizing LTI controllers. It was shown that for a
certain class of strictly proper LTI plants, the requirement for
simultaneous stability can be cast as an LMI. The LMI condi-
tion was exploited to cast the design problem as a standard
control problem. The cost function in the is chosen to rep-
resent disturbance amplification of ( , ), where is one of
the plants that are simultaneously stabilized by the controller .
It was noted that since the technique is based on several conser-
vative assumptions, it is not guaranteed to succeed. However,
for several test cases we have found it to be potent. The design
procedure was applied to the fault-tolerantlane-keeping control
problem for front-wheel steered automated vehicles used in Cal-
ifornia PATH’s automated highways program. The lane-keeping

Fig. 12. Front magnetometer failure (around 50 s): high-speed test.

control system implemented on PATH’s test vehicles utilizes
two lateral-error measuring sensors. This paper discussed the
design of a controller that guarantees stability under no-fault
operation as well as the conditions when either one of the two
sensors fails. In addition, the controller was required to sat-
isfy adequate disturbance rejection measures in the no-fault sce-
nario. High- and low-speed experimental results demonstrating
achievement of these design objectives were documented.

Future work will focus on reducing the conservativeness in
the solution for (5). The following remarks indicate the direction
we are pursuing.

1) An alternate methodology to solve (5) is to choose a fi-
nite number of basis transfer functions to parameterize
the “ space” i.e., express as where

. Problem (5) can then be cast as an optimiza-
tion problem where the search is done over the “ space”

. Examples of optimization prob-
lems where basis functions are used can be found in [26].

2) The design problem (5) is a constrained optimization
problem. It may be useful to explore techniques to convert
this problem into a suitable unconstrained optimization
problem (see [27]).

Finally, we mention that the design of robust simultaneously
stabilizing controllers, a very challenging problem, has not been
attempted so far. Stability and performance robustness of simul-
taneously stabilizing controllers are extremely important since
fault models are never known precisely. We wish to address this
issue in our future efforts.
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