
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 38, NO. 3, JUNE 1991

Trajectory Control of Robotic

195

Manipulators
Using Neural Networks

Tomochika Ozaki, Tatsuya Suzuki, Member, IEEE, Takeshi Furuhashi, Member, IEEE, Shigeru
Okuma, Member, IEEE, and Yoshiki Uchikawa

AbsZruct-This paper presents a nonlinear compensator using
neural networks for trajectory control of robotic manipulators.
The adaptive capability of the neural network controller to
compensate unstructured uncertainties is clarified. A model
learning scheme is also proposed in this paper. The learning
procedure is effective and efficient in learning the manipulator
dynamics, and error convergence with untrained trajectories is
fast.

I. INTRODUCTION
OBOTIC manipulators have become increasingly impor- R tant in the field of flexible automation. High-speed and

high-precision trajectory tracking is one of the indispensable
capabilities for versatile applications of the mechanical ma-
nipulators. Even in a well-structured setting for an industrial
use, the manipulators are subjected to structured and/or
unstructured uncertainties. Structured uncertainty is called to
be the case of a correct dynamical model with parameter
uncertainty due to imprecision on the manipulator link prop-
erties, unknown loads, inaccuracies on the torque constants
of the actuators, and so on. Unstructured uncertainty corre-
sponds to the case of unmodeled dynamics. Unmodeled dy-
namics results from the presence of the high-frequency mode
of the manipulator, neglected time-delays, nonlinear friction,
and so on. The computed torque method is an effective means
for the trajectory control of robotic manipulators [l], but it
has become widely recognized that the tracking performance
of the method in high-speed operations is severely affected by
the uncertainties mentioned above. This is especially true for
direct-drive robots that have no gearing to reduce the dy-
namic effects. Adaptive approaches have been proposed to
maintain the tracking performance of the robotic manipula-
tors in the presence of the structured uncertainty [2], [3].
Although the adaptive controls are effective to compensate
the influence of the structured uncertainty, it is not clear that
the adaptive means can overcome the effects of the unstruc-
tured uncertainty.

Neural networks with a learning algorithm called back
propagation are considered to be new approaches to adaptive
controls [4] - [9]. In [6] - [9], a neural network was used in a
feedforward loop with a conventional feedback PD controller
for manipulator control. As learning went on, the feedfor-

Manuscript received January 8,1990; revised August 8,1990.
The authors are with the Department of Electronic Mechanical Engineer-

ing, School of Engineering, Nagoya University, Nagoya, Japan.
IEEE Log Number 9144910.

ward/feedback compensation tended to move to the feedfor-
ward path with little feedback compensation. The inverse-dy-
namics model of the manipulator was considered to be ob-
tained by the learned neural network. However, the neural
network in [6] - [8] had many preprocessors computing vari-
ous nonlinear transformations of input signals. The designer
of the neural network controller had to know the fairly
precise structure of the control object. The effectiveness of
the neural network controller to compensate the unstructured
uncertainties was not clear. In [9], a three-layered neural
network without the preprocessor was used, and the designer
of the controller was not required to know the structure of the
robotic manipulator. The actual trajectory of the manipulator
followed the desired one well after the learning was finished,
but when the desired trajectory was changed to that not used
in the training of the neural network controller, the error
between the desired trajectory and the actual one became
large, and more learning was necessary. This means that the
inverse-dynamics model was not obtained by the learning of
the neural network. Learning architectures for neural net-
work controllers were proposed by Psaltis et al. [lo]. The
architectures seem to be more efficient in learning the nonlin-
ear mechanical manipulators than that in [9]. However, for
the general learning architecture proposed in [lo], data of the
inputs and outputs of the plant have to be taken by actually
operating the plant in real time. The operation may take
much time. Furthermore, although the neural network con-
trollers in [9] and [lo] were expected to be effective to
compensate the unstructured uncertainties, no clear compari-
son of the tracking performances between the neural network
controller and conventional adaptive schemes was made.

This paper presents a nonlinear compensator using neural
networks, which incorporates the idea of the computed torque
method. The neural networks are used to not learn inverse-
dynamics but to compensate nonlinearities of robotic manipu-
lators. A comparison of the performance of the proposed
neural network controller with that of the adaptive controller
proposed by Craig [2] is shown, and the effectiveness of the
proposed neural network controller in compensating the un-
structured uncertainties is clarified.

A learning scheme using a model of known dynamics of
manipulators is also proposed. The model learning can be
done off line and needs no data recording of actual manipula-
tor operation. Therefore, the model learning is more efficient
than the scheme in [lo]. After the model learning is finished,
the neural network controllers learn structured/unstructured
uncertainties of the actual manipulator on line. The trained

0278-0046/91/0600-0195$01.00 0 1991 IEEE

196 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 38, NO. 3, JUNE I 9 9 1

neural network is faster in error convergence than that in [9]
in responding to an untrained trajectory.

II. COMPUTED TORQUE METHOD
The robotic manipulator is modeled as a set of n rigid

bodies connected in series with one end fixed to the ground
and the other end free. The bodies are jointed together with
revolute or prismatic joints. A torque actuator is acting at
each joint. The dynamic equation of the manipulator is given
by 121

7 = M (e) e + h (e , e) + F (1)
where

7 n X 1 vector of joint torques supplied by the actua-
tors

M n x n manipulator inertia matrix
h n X 1 vector representing centrifugal, Coriolis, and

friction forces
e n x 1 vector of joint positions
8 n x 1 vector for joint velocities
F n x 1 vector of unknown terms arising from unmod-

eled dynamics and external disturbances.

The control law of the computed torque method is ex-
pressed by the following equations:

7 = & (e) # + @ , e)
U = e , + Kp(e , - e) + ~ , (e , - e) (2)

where & and are the estimates of M and h, respectively.
These estimates are used for nonlinear compensation of
robotic manipulators. 8, is the desired joint position. K, and
K , are n x n diagonal matrices with each element on the
diagonals being positive. The control system using (2) is
shown in Fig. 1. The dynamics of error e(= 8, - 8) is given
by substituting (2) into (1)

&(e, + K,e + ~ , t) + h = MJ + h + F (3)

then

e + K,e + Kpe = & - ' ((A 4 - &) e + h - h + F). (4)

It is easy to see that if parameter estimation errors are not
zero or unknown terms exist, asymptotic stability is not
assured.

For F = 0 in (l), adaptive schemes of manipulator control
have been proposed [2], [3]. The parameter modeling algo-
rithms are globally asymptotically stable, but such an un-
structured uncertainty as F may not be negligible in actual
use, and the stability of the algorithms is not guaranteed.

III. NEURAL NETWORK CONTROLLER
The proposed neural network controller is shown in Fig. 2.

The robotic manipulator in Fig. 2 has the unmodeled term F.
The neural networks "1, NN2 are to identify the inertia
matrix M and the term h + F of the manipulator, respec-
tively, for nonlinear compensation of the manipulator. The
structure of the controller is simple and is easy to compare
the performances with the adaptive controllers. Moreover,

Tjd

' B d

;dd- + - h
a d

Fig. 1. Controller using computed torque method.

B P

B d
B d A- I

Fig. 2. Neural network controller.

the structure is suitable for the model learning, which will be
discussed in Section IV.

We use a simple two-degree-of-freedom SCARA-type ma-
nipulator, as is shown in Fig. 3. The number n in (1) is two.
The m e n g of the symbols in Fig. 3 is listed on Table I.
The unstructured uncertainty is assumed to be the Coulomb
friction in this paper. The elements of the inertia matrix Mij
(j , j = 1,2) are

1
M I , = - (m,k: + m,(L: + kz

N I

+ 2 ~ , k , COS 8, + zl + 1, + J,,N:)

Nl

1
M12 = - (m,(k; + L,k, cos 8,) + I ,)

1
M - -(m,k: + I , + J,,&?).

22 - N,

The torques arising from centrifugal and Coriolis
(i = 1,2) are given by

(5)

forces hi

1
h, = -(-L,k,m, 8, e; - 2Llk,m,

Nl

'sin8, - 4, - 8, + D,,N:e,)

N2

1
h, = - (L , k 2 m 2 s i n 8 , ~ ~ ~ + D , , N ~ ~ ,) . (6)

The elements of the Coulomb friction E;;. (i = 1,2) are
expressed as

F~ = T, - sgn (e,)
F , = T,-sgn(8,). (7)

OZAKI et al. : TRAJECTORY CONTROL OF ROBOTIC MANIPULATORS 191

Y

Fig. 3. Twc-degree-of-freedom manipulator.

TABLE I
PARAMETERS OF MANIPULATOR

Link 1 Link 2 unit

Arm length
Link center of gravity
Mass
Inertia
Gear ratio
Coulomb friction coefficient
Motor inertia
Motor damping coefficient

L 0.25 0.16 m
k 0.20 0.14 m

m 9.5 5.0 Kg
Z 4.3 x 6.1 x K g - m z

N 4 0 30
T 0.10 0.10 N * m

J, 4.61 x lo-' 2.65 x lo-' Kg * m2
Dm 3.85 x 1.39 x N . s m-'

The structures of the neural networks "1, NN2 are shown
in Fig. 4. Both the networks are three-layered networks
consisting of input, hidden, and output layers. The input
signal of the input layer of NN1 is cos O2 because the
elements of the inertia matrix Mij (i, j = 1,2) have the
form of a cos 8, + 0 (a, 6: constant). Since the joint posi-
tion of the link1 8, does not appear in (6), the inputs to the
neural network NN2 do not include 8 , . The joint torques T

applied to the manipulator is given by the following equation:

7 = f i u + x (8)
where

0; (I = 1 for NN1 and I = 2 for "2) denotes the output
signal of the output layer of each neural network. K j is the
matching gain for adjusting the outputs of the neural net-
works to the desirable torques. The units in each layer are
connected through weights, and the weights are to be modi-
fied by the error back propagation [4]. The output of a unit in
the output and hidden layers Oj is obtained by the following
equations:

oj = f (i j) (9)

where i j is the weighted sum of the outputs of the previous
layer. Wji denotes the weight. The function f(-) is called the
sigmoid function and is expressed by

The units in the input layer of NN1 and NN2 just deliver
their input signals to the units in the hidden layer. The
connection strength Wji is changed by an amount given by

AWji = qSjf'(Oj) * ii (12)

where q is the learning rate, Sj is given by (for the units in
the output layer of "1)

Sj = Kj'UI(K,(8, - 8) + Kv(ed - e)) (13)
1 = 1
1 = 2

(for the units in the output layer of "2)

when j = 1 , 2
when j = 3 , 4

Sj = K;(K, (8 , - 8) + Kv(bd - e)) (14)

(and for the units in the hidden layer of NN1 and "2)

Si = WliSI. (15)
I

Iv. SIMULATION

Simulations were done to verify the proposed neural net-
work controller compensating unstructured uncertainties. The
simulation conditions of the robotic manipulator are listed in
Table I. The manipulator used for the simulation was a
two-degree-of-freedom SCARA-type one. The matching gains
are listed in Table II. The structured uncertainty in this paper
was the Coulomb friction defined by (7). The link inertia and

i j = wjioi (10) the link centroid position are the main parameters, which are
difficult to measure. Here, the parameter uncertainty was i

198 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 38, NO. 3, JUNE 1991

Input Layer Hidden Layer Output Layer N
E = (X d i - Xi)2 + (Ydi - q)2 (17)

where N is the sampling number in writing a circle. Xdi and
Ydi are the desired trajectories on the X-Y plane at the ith
sampling period. X i and 5 are the actual trajectories.

For comparison, Fig. 6 shows the obtained endpoint trajec-
tory by the computed torque method with the adaptive scheme
[2]. The top figure is the trajectory on X-Y plane at the
100th trial. The bottom figure is the tracking error. Since the
Coulomb friction is not incorporated in neither the model
used for the computed torque method nor the adaptive scheme,
the tracking error is approximately seven times greater than
that of the neural network controller. The distinctive feature
of the neural network controller over the conventional con-
troller is that the neural network controller needs no informa-
tion about the unstructured uncertainty, which was assumed
to be 4 in (7) in this paper. The neural network controller
can learn the unstructured uncertainty 4. as well as the inertia
matrix M and the centrifugal, Coriolis forces h through the
trial of following desired trajectories.

i = 1

(a)

Input Layer Hidden Layer Output Layer

i; l + E l

i;, + 'is,

e , ~

e , ~

V. MODEL LEARNING
(b)

network ("2).
Fig. 4. Structure of neural networks: (a) Neural network ("1); (b) neural

TABLE II
MATCHING GAINS

Symbol Gain

NN1 K : 0.05
K: 0.005
K: 0.005
K: 0.005

"2 K : 0.5
K,Z 0.5

assumed to be the deviation of the link centroid position as
follows:

k, = 1.2 - k,
k, = 1.2 - k,. (16)

k, and k2 were used for calculating fi and A for the
computed torque method. The Coulomb friction was not
incorporated into the control law.

Fig. 5 shows the simulation results of the trajectory control
by the neural network controller. The figure shows the first,
100th, and 200th trial of writing a circle on the X-Y Plane.
It took about 3s for one trial, and the sampling period was 2
ms. The proportional gain K , and the differential gain K ,
were set at 20 and 5, respectively. At the outset of the
simulation, the connection weights of the neural network Wji
were randomly initialized. As the learning of the neural
network proceeded, the endpoint trajectory of the manipula-
tor well followed the desired one. At the 200th trial, the
tracking error converged to the value shown in Fig. 5(d). The
tracking error E is defined as follows:

Psaltis et al. proposed a two-stage learning procedure
[lo]. The first stage is called generalized learning with its
configuration shown in Fig. 7(a), and the second stage is
called specialized learning with a different configuration
shown in Fig. 7@). For generalized learning, the robotic
manipulator should actually be operated, and operating data
should be recorded. Then, the neural network receives the
obtained trajectories and is trained to yield the desired torque
command. This training can be fulfilled off line. After the
neural network is well trained, the neural network is installed
in the feedforward loop of the manipulator controller, and
specialized learning is used to fine tune the neural network on
line.

This procedure is inefficient in generalized learning be-
cause of the following:

1) For recording the learning data, the robotic manipulator
should actually be operated. This is time consuming.

2) It is difficult to obtain data that are uniformly dis-
tributed over the working space of the endpoint of the
manipulator.

As far as robotic manipulators are concerned, we can
obtain information of their dynamical models to a certain
extent. We propose a learning scheme using the obtained
dynamical model for the generalized learning of the neural
network. Since no actual operation of the manipulator is
necessary in generalized learning, mode learning is efficient.
After model learning, the neural network can be trained to
learn structured/unstructured uncertainties by actually oper-
ating the manipulator on line. Fig. 8 shows the configuration
of the propos$ modT1 learning. The models used for the
learning are M and h in (2). The unknown torque F is not
incorporated in the model. The neural networks to be trained
in this paper are those in Fig. 4. The inputs to the models and
the neural networks are desired trajectories, and the outputs

199 OZAKI et al.: TRAJECTORY CONTROL OF ROBOTIC MANIPULATORS

I Desired trajectory
0 . 3

0.1

0.0

0 .0 0.1 0.2 0 . 3 0.4

X I M)

(a)

O - ' I t Desired trajectory
0 . 3

0.2 0 . 3 0.4 0 .o 0.1

X (M I

O * ' i Desired trajectory

0.0 0.1 0.2 0 . 3 0.4
x (HI

(b)

0
0
'1L - 1 1

0

0' I t L -2 0 100 200

Trial Nuniber
(d)

Fig. 5 . Simulation results with neural network controller: (a) First trial; (b)
100th trial; (c) 200th trial; (d) tracking error convergence.

are corresponding torques. Since we can restrict the working
space of the robotic manipulator, it is easy to define the
ranges of the inputs, i.e., the link positions and velocities.
The ranges of the inputs used for simulation are listed in
Table III. By equally dividing the ranges by the numbers on
the table, input data for the model learning are obtained.
Since the outputs of the models are uniquely determined by
the link positions and velocities, it is possible to randomly
choose the combination of the inputs e,, e,, e , . Thus, the
neural network is generally trained. The neyral network NN1
was trained to l y n the inertia matrix M, and NN2 was
trained to learn h. For "2, the total number of the combi-

nation of the learning data was 25 x 25 x 25. One trial of
the model learning is defined as such that every combination
of the learning data is fed once to the neural networks.

After the 200th trial of the model learning, the neural
networks;are installed in the controller in Fig. 2. Then, the
neural nethorks were trained to learn parameter deviations
and such unmodeled effects as the Coulomb friction by
actually controlling the manipulator to follow the straight line
trajectory shown in Fig. 9. As for the parameter deviations,
(16) was assumed. The manipulator wrote the straight line
100 times. Then, the desired trajectory was changed to a
circle. Fig. 1O(a) shows the trajectory at the first trial after

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 38, NO. 3, JUNE 1991 200

e d , bdr i d
> Simple Model Y Torque

0
0

-7 0

0

0 100
Trial Number

(b)

Fig. 6. Simulation results (computed torque method with adaptive scheme):
(a) 100th trial; (b) tracking error convergence.

the change. The neural network controller trained through the
above training procedure followed the circle fairly well. Fig.
lo@) shows the case where model learning was not used. In
this case, the neural network was directly trained by the
system in Fig. 2 with the desired trajectory in Fig. 9. After
the manipulator wrote the straight line 400 times, the track-
ing error converged to almost the same value as that of the
model learning case. Then, the desired trajectory was changed
to the same circle as that in Fig. lO(a). Fig. lo@) shows the
trajectory at the first trial after the change. The tracking error
of the trajectory in Fig. lo@) was about 30 times greater than
that in Fig. lO(a). Fig. 11 shows the convergence of the
tracking errors as learning goes on from the first trial in Fig.
10. The tracking error of the controller with the model

(b)

cialized learning.
Fig. 7. Two stage learning procedure: (a) Generalized learning; (b) spe-

Desired Trajectory

Teaching Signal

Back Propagatioii

Fig. 8. Model learning.

TABLE III
INPUTS OF MODEL LEARNING

N.N. Variables Range Number of Learning Data

NN1 8 2 -3. - 3. 200
8 2 -3. I 3% 25

N N 2 4 -1.5 - 1.5 25
9 2 -1.5 - 1.5 25

learning converged fast, and the error at the 30th trial was
about 1 /25th that of the controller without the model learning
at the 100th trial.

The neural networks that directly learned the nonlinearities
of the robotic manipulator were trained to write the straight
line. The networks did not learn the nonlinearities over the
working space. Thus, when the desired trajectory was
changed, the networks had to learn further. On the other
hand, the neural networks that were trained with the simple
model learned the nonlinearities of the manipulator over all
of the working space. Therefore, what is necessary for the
networks to learn further is only the structured/unstructured
uncertainties. The simulation results show that the learning of
these uncertainties takes less number of trials.

OZAKI e2 all: TRAJECTORY CONTROL OF ROBOTIC MANIPULATORS 201

h

0.4

0 . 3

,-.
z 0.2

*

0.1

0 . 0

0.4

0 . 3

-
' r 0.2

*

0.1

0 . 0
0 .0 0.1 0 . 2 0 . 3 0.4

x (HI
Fig. 9. Trajectory for fine tuning of the neural network.

0.4

Desired trajectory
I 0 - 3

Desired trajectory

0 . 0 0.1 0 . 2 0 . 3 0.4
x (M)

(a)

0 .0 0.1 0.2 0 . 3 0.4

x (M I

(3)

Fig. 10. Simulation results: (a) With model learning; (b) without model
learning.

Link inertia and link centroid position are the most difficult
to exactly measure. Approximately 20% error of the meas-
urement is expected. Incorporating this amount of parameter
deviation, the model learning scheme was confirmed to be
effective. The model learning with simple models for elemen-
tary training of neural networks is an effective and efficient
scheme.

VI. CONCLUSIONS
This paper presented a nonlinear compensator using neural

networks for trajectory control of robotic manipulators. A
comparison of its performance with the conventional adaptive

scheme in compensating the unmodeled effects was done. As
a result, the adaptive capability of the neural network con-
troller to the unstructured effects was clarified. On the con-
trary, the conventional scheme has no capability to overcome
the unmodeled effects.

A model learning scheme was also proposed. The elemen-
tary training of the neural network using an obtained model
can be fulfilled off line. After the model learning is finished,
the neural network learns structured/unstructured uncertain-
ties on line. This learning procedure is effective and efficient
in learning the manipulator dynamics, and the error conver-
gence rate with untrained trajectory is fast.

202 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 38, NO. 3, JUNE 1991

PI

[31

cs 0 - :j . a

0

0 - 1 I

0 30
Trial Number

(a)

mr=!

Fig. 11. Tracking errors: (a) With model learning; (b) without model
learning.

REFERENCES
J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “On-line computa-
tional scheme for mechanical manipulators,” J. Dyn. Syst., Meas.
Contr., vol. 102, pp. 69-76, June 1980.
J . J. Craig, Adaptive Control of Mechanical Manipulators.
Reading, MA: Addison-Wesley, 1988.
J. E. Slotine and W. Li, “Adaptive manipulator control: A case
study,” IEEE Trans. Automat. Contr., vol. 33, no. 11, pp.

Rumelhart et al., Parallel Distributed Processing. Cambridge,
MA: MIT Press, 1986.
B. Bavarian, “Introduction to neural networks for intelligent control,”
ZEEE Contr. Syst. Mag., pp. 3-7, Apr. 1988.
M. Kawato et al., “Hierarchical neural network model for voluntary

995-1003, NOV. 1988.

movement with application to robotic,” ZEEE‘Contr. Syst. Mag.,
pp. 8-16, Apr. 1988.
H. Miyamoto et al., “Feedback-error-learning neural network for
trajectoiy control of a robotic manipulator,” Neural Networks, vol.
1, no. 3, 1988.
M. Kawato, K. Furukawa, and R. Suzuki, “A hierarchical neural-net-
work model for control and learning of voluntary movement,” Bioi.
Cybern., vol. 57, pp. 169-185, 1987.
T. Setoyama, M. Kawato, and R. Suzuki, “Manipulator control by
inversedynamic model learned in multi-layer neural network,” in
Japan IEICE Tech. Rep., vol. MBE87-135, pp. 249-256, 1987.
D. Psaltis, A. Sideris, and A. Yamamura, “A multilayer neural
network controller,” IEEE Contr. Syst. Mag., pp. 17-21, Apr.
1988.

