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AbsZruct-This paper presents a nonlinear compensator using 
neural networks for trajectory control of robotic manipulators. 
The adaptive capability of the neural network controller to 
compensate unstructured uncertainties is clarified. A model 
learning scheme is also proposed in this paper. The learning 
procedure is effective and efficient in learning the manipulator 
dynamics, and error convergence with untrained trajectories is 
fast. 

I. INTRODUCTION 
OBOTIC manipulators have become increasingly impor- R tant in the field of flexible automation. High-speed and 

high-precision trajectory tracking is one of the indispensable 
capabilities for versatile applications of the mechanical ma- 
nipulators. Even in a well-structured setting for an industrial 
use, the manipulators are subjected to structured and/or 
unstructured uncertainties. Structured uncertainty is called to 
be the case of a correct dynamical model with parameter 
uncertainty due to imprecision on the manipulator link prop- 
erties, unknown loads, inaccuracies on the torque constants 
of the actuators, and so on. Unstructured uncertainty corre- 
sponds to the case of unmodeled dynamics. Unmodeled dy- 
namics results from the presence of the high-frequency mode 
of the manipulator, neglected time-delays, nonlinear friction, 
and so on. The computed torque method is an effective means 
for the trajectory control of robotic manipulators [l], but it 
has become widely recognized that the tracking performance 
of the method in high-speed operations is severely affected by 
the uncertainties mentioned above. This is especially true for 
direct-drive robots that have no gearing to reduce the dy- 
namic effects. Adaptive approaches have been proposed to 
maintain the tracking performance of the robotic manipula- 
tors in the presence of the structured uncertainty [2], [3]. 
Although the adaptive controls are effective to compensate 
the influence of the structured uncertainty, it is not clear that 
the adaptive means can overcome the effects of the unstruc- 
tured uncertainty. 

Neural networks with a learning algorithm called back 
propagation are considered to be new approaches to adaptive 
controls [4] - [9]. In [6] - [9], a neural network was used in a 
feedforward loop with a conventional feedback PD controller 
for manipulator control. As learning went on, the feedfor- 
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ward/feedback compensation tended to move to the feedfor- 
ward path with little feedback compensation. The inverse-dy- 
namics model of the manipulator was considered to be ob- 
tained by the learned neural network. However, the neural 
network in [6] - [8] had many preprocessors computing vari- 
ous nonlinear transformations of input signals. The designer 
of the neural network controller had to know the fairly 
precise structure of the control object. The effectiveness of 
the neural network controller to compensate the unstructured 
uncertainties was not clear. In [9], a three-layered neural 
network without the preprocessor was used, and the designer 
of the controller was not required to know the structure of the 
robotic manipulator. The actual trajectory of the manipulator 
followed the desired one well after the learning was finished, 
but when the desired trajectory was changed to that not used 
in the training of the neural network controller, the error 
between the desired trajectory and the actual one became 
large, and more learning was necessary. This means that the 
inverse-dynamics model was not obtained by the learning of 
the neural network. Learning architectures for neural net- 
work controllers were proposed by Psaltis et al. [lo]. The 
architectures seem to be more efficient in learning the nonlin- 
ear mechanical manipulators than that in [9]. However, for 
the general learning architecture proposed in [lo], data of the 
inputs and outputs of the plant have to be taken by actually 
operating the plant in real time. The operation may take 
much time. Furthermore, although the neural network con- 
trollers in [9] and [lo] were expected to be effective to 
compensate the unstructured uncertainties, no clear compari- 
son of the tracking performances between the neural network 
controller and conventional adaptive schemes was made. 

This paper presents a nonlinear compensator using neural 
networks, which incorporates the idea of the computed torque 
method. The neural networks are used to not learn inverse- 
dynamics but to compensate nonlinearities of robotic manipu- 
lators. A comparison of the performance of the proposed 
neural network controller with that of the adaptive controller 
proposed by Craig [2] is shown, and the effectiveness of the 
proposed neural network controller in compensating the un- 
structured uncertainties is clarified. 

A learning scheme using a model of known dynamics of 
manipulators is also proposed. The model learning can be 
done off line and needs no data recording of actual manipula- 
tor operation. Therefore, the model learning is more efficient 
than the scheme in [lo]. After the model learning is finished, 
the neural network controllers learn structured/unstructured 
uncertainties of the actual manipulator on line. The trained 
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neural network is faster in error convergence than that in [9] 
in responding to an untrained trajectory. 

II. COMPUTED TORQUE METHOD 
The robotic manipulator is modeled as a set of n rigid 

bodies connected in series with one end fixed to the ground 
and the other end free. The bodies are jointed together with 
revolute or prismatic joints. A torque actuator is acting at 
each joint. The dynamic equation of the manipulator is given 
by 121 

7 = M ( e ) e  + h ( e ,  e )  + F (1) 
where 

7 n X 1 vector of joint torques supplied by the actua- 
tors 

M n x n manipulator inertia matrix 
h n X 1 vector representing centrifugal, Coriolis, and 

friction forces 
e n x 1 vector of joint positions 
8 n x 1 vector for joint velocities 
F n x 1 vector of unknown terms arising from unmod- 

eled dynamics and external disturbances. 

The control law of the computed torque method is ex- 
pressed by the following equations: 

7 = & ( e ) #  + @ , e )  
U = e ,  + Kp(e ,  - e )  + ~ , ( e ,  - e )  (2) 

where & and are the estimates of M and h,  respectively. 
These estimates are used for nonlinear compensation of 
robotic manipulators. 8, is the desired joint position. K, and 
K ,  are n x n diagonal matrices with each element on the 
diagonals being positive. The control system using (2) is 
shown in Fig. 1.  The dynamics of error e( = 8, - 8) is given 
by substituting (2) into (1) 

&(e, + K,e + ~ , t )  + h = MJ + h + F (3) 

then 

e + K,e  + Kpe = & - ' ( ( A 4  - & ) e  + h - h + F). (4) 

It is easy to see that if parameter estimation errors are not 
zero or unknown terms exist, asymptotic stability is not 
assured. 

For F = 0 in (l), adaptive schemes of manipulator control 
have been proposed [2], [3]. The parameter modeling algo- 
rithms are globally asymptotically stable, but such an un- 
structured uncertainty as F may not be negligible in actual 
use, and the stability of the algorithms is not guaranteed. 

III. NEURAL NETWORK CONTROLLER 
The proposed neural network controller is shown in Fig. 2. 

The robotic manipulator in Fig. 2 has the unmodeled term F. 
The neural networks "1, NN2 are to identify the inertia 
matrix M and the term h + F of the manipulator, respec- 
tively, for nonlinear compensation of the manipulator. The 
structure of the controller is simple and is easy to compare 
the performances with the adaptive controllers. Moreover, 
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Fig. 1. Controller using computed torque method. 
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Fig. 2. Neural network controller. 

the structure is suitable for the model learning, which will be 
discussed in Section IV. 

We use a simple two-degree-of-freedom SCARA-type ma- 
nipulator, as is shown in Fig. 3. The number n in (1) is two. 
The m e n g  of the symbols in Fig. 3 is listed on Table I. 
The unstructured uncertainty is assumed to be the Coulomb 
friction in this paper. The elements of the inertia matrix Mij 
( j ,  j = 1,2) are 

1 
M I ,  = - (m,k: + m,( L: + kz 

N I  

+ 2 ~ , k ,  COS 8,  + zl + 1, + J,,N:) 

Nl 

1 
M12 = - (m,(  k; + L,k, cos 8, )  + I , )  

1 
M - -(m,k: + I ,  + J,,&?). 

22 - N, 

The torques arising from centrifugal and Coriolis 
(i = 1,2) are given by 

( 5 )  

forces hi 

1 
h, = -( -L,k,m, 8, e;  - 2Llk,m, 

Nl 

'sin8, - 4, - 8, + D,,N:e,) 

N2 

1 
h, = - ( L , k 2 m 2 s i n 8 , ~ ~ ~ + D , , N ~ ~ , ) .  (6) 

The elements of the Coulomb friction E;;. (i = 1,2) are 
expressed as 

F~ = T, - sgn (e,) 
F , =  T,-sgn(8,). (7) 
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Y 

Fig. 3. Twc-degree-of-freedom manipulator. 

TABLE I 
PARAMETERS OF MANIPULATOR 

Link 1 Link 2 unit 

Arm length 
Link center of gravity 
Mass 
Inertia 
Gear ratio 
Coulomb friction coefficient 
Motor inertia 
Motor damping coefficient 

L 0.25 0.16 m 
k 0.20 0.14 m 

m 9.5 5.0 Kg 
Z 4.3 x 6.1 x K g - m z  

N 4 0  30 
T 0.10 0.10 N * m 

J,  4.61 x lo-' 2.65 x lo-' Kg * m2 
Dm 3.85 x 1.39 x N . s m-' 

The structures of the neural networks "1, NN2 are shown 
in Fig. 4. Both the networks are three-layered networks 
consisting of input, hidden, and output layers. The input 
signal of the input layer of NN1 is cos O2 because the 
elements of the inertia matrix Mij (i, j = 1,2) have the 
form of a cos 8,  + 0 (a, 6:  constant). Since the joint posi- 
tion of the link1 8, does not appear in (6), the inputs to the 
neural network NN2 do not include 8 , .  The joint torques T 

applied to the manipulator is given by the following equation: 

7 = f i u + x  (8) 
where 

0; (I  = 1 for NN1 and I = 2 for "2) denotes the output 
signal of the output layer of each neural network. K j  is the 
matching gain for adjusting the outputs of the neural net- 
works to the desirable torques. The units in each layer are 
connected through weights, and the weights are to be modi- 
fied by the error back propagation [4]. The output of a unit in 
the output and hidden layers Oj is obtained by the following 
equations: 

oj = f ( i j )  (9) 

where i j  is the weighted sum of the outputs of the previous 
layer. Wji denotes the weight. The function f(-) is called the 
sigmoid function and is expressed by 

The units in the input layer of NN1 and NN2 just deliver 
their input signals to the units in the hidden layer. The 
connection strength Wji is changed by an amount given by 

AWji = qSjf'( Oj) * ii (12) 

where q is the learning rate, Sj is given by (for the units in 
the output layer of "1) 

Sj  = Kj'UI(K,(8, - 8 )  + Kv(ed  - e ) )  (13) 
1 = 1 
1 = 2 

(for the units in the output layer of "2) 

when j = 1 , 2  
when j = 3 , 4  

Sj  = K;(K, (8 ,  - 8 )  + Kv(bd - e ) )  (14) 

(and for the units in the hidden layer of NN1 and "2) 

Si = WliSI. (15) 
I 

Iv. SIMULATION 

Simulations were done to verify the proposed neural net- 
work controller compensating unstructured uncertainties. The 
simulation conditions of the robotic manipulator are listed in 
Table I. The manipulator used for the simulation was a 
two-degree-of-freedom SCARA-type one. The matching gains 
are listed in Table II. The structured uncertainty in this paper 
was the Coulomb friction defined by (7). The link inertia and 

i j  = wjioi (10) the link centroid position are the main parameters, which are 
difficult to measure. Here, the parameter uncertainty was i 
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Input Layer Hidden Layer Output Layer N 
E = ( X d i  - Xi)2  + (Ydi - q)2 (17) 

where N is the sampling number in writing a circle. Xdi and 
Ydi are the desired trajectories on the X-Y plane at the ith 
sampling period. X i  and 5 are the actual trajectories. 

For comparison, Fig. 6 shows the obtained endpoint trajec- 
tory by the computed torque method with the adaptive scheme 
[2]. The top figure is the trajectory on X-Y plane at the 
100th trial. The bottom figure is the tracking error. Since the 
Coulomb friction is not incorporated in neither the model 
used for the computed torque method nor the adaptive scheme, 
the tracking error is approximately seven times greater than 
that of the neural network controller. The distinctive feature 
of the neural network controller over the conventional con- 
troller is that the neural network controller needs no informa- 
tion about the unstructured uncertainty, which was assumed 
to be 4 in (7) in this paper. The neural network controller 
can learn the unstructured uncertainty 4. as well as the inertia 
matrix M and the centrifugal, Coriolis forces h through the 
trial of following desired trajectories. 

i =  1 

(a) 

Input Layer Hidden Layer Output Layer 

i; l + E l 

i;, + 'is, 

e ,  ~ 

e ,  ~ 

V. MODEL LEARNING 
(b) 

network ("2). 
Fig. 4. Structure of neural networks: (a) Neural network ("1); (b) neural 

TABLE II 
MATCHING GAINS 

Symbol Gain 

NN1 K :  0.05 
K: 0.005 
K:  0.005 
K: 0.005 

"2 K :  0.5 
K,Z 0.5 

assumed to be the deviation of the link centroid position as 
follows: 

k, = 1.2 - k, 
k, = 1.2 - k,. (16) 

k, and k2 were used for calculating fi and A for the 
computed torque method. The Coulomb friction was not 
incorporated into the control law. 

Fig. 5 shows the simulation results of the trajectory control 
by the neural network controller. The figure shows the first, 
100th, and 200th trial of writing a circle on the X-Y Plane. 
It took about 3s for one trial, and the sampling period was 2 
ms. The proportional gain K ,  and the differential gain K ,  
were set at 20 and 5, respectively. At the outset of the 
simulation, the connection weights of the neural network Wji 
were randomly initialized. As the learning of the neural 
network proceeded, the endpoint trajectory of the manipula- 
tor well followed the desired one. At the 200th trial, the 
tracking error converged to the value shown in Fig. 5(d). The 
tracking error E is defined as follows: 

Psaltis et al. proposed a two-stage learning procedure 
[lo]. The first stage is called generalized learning with its 
configuration shown in Fig. 7(a), and the second stage is 
called specialized learning with a different configuration 
shown in Fig. 7@). For generalized learning, the robotic 
manipulator should actually be operated, and operating data 
should be recorded. Then, the neural network receives the 
obtained trajectories and is trained to yield the desired torque 
command. This training can be fulfilled off line. After the 
neural network is well trained, the neural network is installed 
in the feedforward loop of the manipulator controller, and 
specialized learning is used to fine tune the neural network on 
line. 

This procedure is inefficient in generalized learning be- 
cause of the following: 

1) For recording the learning data, the robotic manipulator 
should actually be operated. This is time consuming. 

2) It is difficult to obtain data that are uniformly dis- 
tributed over the working space of the endpoint of the 
manipulator. 

As far as robotic manipulators are concerned, we can 
obtain information of their dynamical models to a certain 
extent. We propose a learning scheme using the obtained 
dynamical model for the generalized learning of the neural 
network. Since no actual operation of the manipulator is 
necessary in generalized learning, mode learning is efficient. 
After model learning, the neural network can be trained to 
learn structured/unstructured uncertainties by actually oper- 
ating the manipulator on line. Fig. 8 shows the configuration 
of the propos$ modT1 learning. The models used for the 
learning are M and h in (2). The unknown torque F is not 
incorporated in the model. The neural networks to be trained 
in this paper are those in Fig. 4. The inputs to the models and 
the neural networks are desired trajectories, and the outputs 
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Fig. 5 .  Simulation results with neural network controller: (a) First trial; (b) 
100th trial; (c) 200th trial; (d) tracking error convergence. 

are corresponding torques. Since we can restrict the working 
space of the robotic manipulator, it is easy to define the 
ranges of the inputs, i.e., the link positions and velocities. 
The ranges of the inputs used for simulation are listed in 
Table III. By equally dividing the ranges by the numbers on 
the table, input data for the model learning are obtained. 
Since the outputs of the models are uniquely determined by 
the link positions and velocities, it is possible to randomly 
choose the combination of the inputs e,, e,, e , .  Thus, the 
neural network is generally trained. The neyral network NN1 
was trained to l y n  the inertia matrix M, and NN2 was 
trained to learn h. For "2, the total number of the combi- 

nation of the learning data was 25 x 25 x 25. One trial of 
the model learning is defined as such that every combination 
of the learning data is fed once to the neural networks. 

After the 200th trial of the model learning, the neural 
networks;are installed in the controller in Fig. 2. Then, the 
neural nethorks were trained to learn parameter deviations 
and such unmodeled effects as the Coulomb friction by 
actually controlling the manipulator to follow the straight line 
trajectory shown in Fig. 9. As for the parameter deviations, 
(16) was assumed. The manipulator wrote the straight line 
100 times. Then, the desired trajectory was changed to a 
circle. Fig. 1O(a) shows the trajectory at the first trial after 
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Fig. 6. Simulation results (computed torque method with adaptive scheme): 
(a) 100th trial; (b) tracking error convergence. 

the change. The neural network controller trained through the 
above training procedure followed the circle fairly well. Fig. 
lo@) shows the case where model learning was not used. In 
this case, the neural network was directly trained by the 
system in Fig. 2 with the desired trajectory in Fig. 9. After 
the manipulator wrote the straight line 400 times, the track- 
ing error converged to almost the same value as that of the 
model learning case. Then, the desired trajectory was changed 
to the same circle as that in Fig. lO(a). Fig. lo@) shows the 
trajectory at the first trial after the change. The tracking error 
of the trajectory in Fig. lo@) was about 30 times greater than 
that in Fig. lO(a). Fig. 11 shows the convergence of the 
tracking errors as learning goes on from the first trial in Fig. 
10. The tracking error of the controller with the model 

(b) 

cialized learning. 
Fig. 7.  Two stage learning procedure: (a) Generalized learning; (b) spe- 

Desired Trajectory 

Teaching Signal 

Back Propagatioii 

Fig. 8. Model learning. 

TABLE III 
INPUTS OF MODEL LEARNING 

N.N. Variables Range Number of Learning Data 

NN1 8 2  -3. - 3. 200 
8 2  -3. I 3% 25 

N N 2  4 -1.5 - 1.5 25 
9 2  -1.5 - 1.5 25 

learning converged fast, and the error at the 30th trial was 
about 1 /25th that of the controller without the model learning 
at the 100th trial. 

The neural networks that directly learned the nonlinearities 
of the robotic manipulator were trained to write the straight 
line. The networks did not learn the nonlinearities over the 
working space. Thus, when the desired trajectory was 
changed, the networks had to learn further. On the other 
hand, the neural networks that were trained with the simple 
model learned the nonlinearities of the manipulator over all 
of the working space. Therefore, what is necessary for the 
networks to learn further is only the structured/unstructured 
uncertainties. The simulation results show that the learning of 
these uncertainties takes less number of trials. 
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Fig. 9. Trajectory for fine tuning of the neural network. 
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Fig. 10. Simulation results: (a) With model learning; (b) without model 
learning. 

Link inertia and link centroid position are the most difficult 
to exactly measure. Approximately 20% error of the meas- 
urement is expected. Incorporating this amount of parameter 
deviation, the model learning scheme was confirmed to be 
effective. The model learning with simple models for elemen- 
tary training of neural networks is an effective and efficient 
scheme. 

VI. CONCLUSIONS 
This paper presented a nonlinear compensator using neural 

networks for trajectory control of robotic manipulators. A 
comparison of its performance with the conventional adaptive 

scheme in compensating the unmodeled effects was done. As 
a result, the adaptive capability of the neural network con- 
troller to the unstructured effects was clarified. On the con- 
trary, the conventional scheme has no capability to overcome 
the unmodeled effects. 

A model learning scheme was also proposed. The elemen- 
tary training of the neural network using an obtained model 
can be fulfilled off line. After the model learning is finished, 
the neural network learns structured/unstructured uncertain- 
ties on line. This learning procedure is effective and efficient 
in learning the manipulator dynamics, and the error conver- 
gence rate with untrained trajectory is fast. 
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Fig. 11. Tracking errors: (a) With model learning; (b) without model 
learning. 
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