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Energy Consumption Evaluation Based on a
Personalized Driver–Vehicle Model
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Abstract— A new approach to evaluate personalized energy
consumption is presented in this paper. The method consists
of identifying driver–vehicle dynamics using the probability
weighted autoregressive model, which is one of the multi-mode
ARX models, and then of reproducing the driver–vehicle behavior
in a vehicle-following task. The energy consumption of the
vehicle is estimated from the velocity profile calculated by using
the driver–vehicle model. In this paper, driving simulator and
real-world driving data were recorded to identify the driver–
vehicle model in various situations. As a result, real-world energy
consumption could be reproduced in a variety of situations
with an average error of 1.9% and a standard deviation within
1.5%. Several promising applications of the energy consumption
evaluation are introduced in this paper, such as an online energy
consumption prediction, a powertrain choice-assistance system
for car buyers, and a solution to estimate the macroscopic energy
consumption of aggregated vehicles in a traffic flow.

Index Terms— Driving behavior reproduction, energy con-
sumption evaluation, hybrid systems, probability-weighted ARX.

I. INTRODUCTION

THE modeling and reproduction of driving behavior
have been studied since the 50’s from various

viewpoints [1]–[3]. These studies were used for numerous
applications such as modeling of traffic flows, optimization
of road infrastructures, prediction of traffic jams, creation of
advanced personalized driver assistance systems, and for the
design of automated driving vehicles.

Analysis and evaluation of mobility solutions’ energy con-
sumption is one of the key issues to realize environment-
aware transportations. Numerous studies have been dedicated
to energy consumption analysis of road and rail vehicles, at
microscopic and macroscopic scales, in order to reduce energy
losses [5]–[16]. The optimization theory have been applied
by many researchers and developers to establish the control
method to realize vehicle motion controls which minimizes
the energy consumption of single or networked vehicles.

Although these works could successfully estimate the
energy consumption in each application domain, the accuracy
of road vehicles energy optimization was limited due to the
lack of precise information on the driving characteristics of
each driver. In order to improve the modeling and estimation
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accuracy of the energy consumption, driving characteristics of
each individual driver must be explicitly represented.

From these considerations, this paper develops a novel
energy consumption estimation method, explicitly based on
personalized driver-vehicle dynamics in vehicle-following
task.

Numerous models have been developed to reproduce the
driver-vehicle personalized behavior in a vehicle-following
task. Some behavior models and most of traffic car-following
models are based on system-oriented methods [1]–[4],
[17]–[20]. These methods are robust, and model parameters
are comprehensive. However, mathematical structure of these
models tend to be complicated. To improve the modeling
accuracy, another broadly studied approach is machine learn-
ing. With machine learning techniques, the human is usually
regarded as a controller. Typical driving behavior models for
this context are linear or non-linear controller model [21], [22],
hybrid dynamical models [24]–[26], stochastic models [23],
neural networks or hidden Markov chains [27]–[29]. In this
paper, the integrated driver-vehicle system is considered as a
single entity, and its reaction to the leading vehicle is modeled
by using the probability weighted autoregressive exogenous
model, PrARX model [31]. PrARX model is one of the hybrid
dynamical (multi-mode) models. This model enables us to
reproduce human behavior by probabilistically overlapping
multiple ARX models. The PrARX model has a comprehen-
sive set of parameters which represent not only motion control
aspects but also mode switching in the driving behavior.
PrARX model has better precision than a simple ARX model
without the drawback of output discontinuity inherent to other
piecewise ARX models. Moreover the PrARX model benefits
from a method to identify the parameters online.

This paper proposes a novel approach to driver behavior
personalized vehicle energy consumption estimation. A new
framework and closed-loop implementation of the PrARX
model is proposed. The hybrid model inputs selection is
detailed, and the simulation energy consumption results are
compared with driving simulator and real-world data.

The paper is organized as follows: In section II, the devel-
oped energy consumption evaluation structure is explained.
In section III, the implementation of the PrARX model to
represent the driver-vehicle dynamics is described in detail.
Modeling method, inputs, output, and the identification process
are explained. Section IV introduces the experimental setups
to collect the driving data. Section V describes the energy
consumption evaluation method in detail, and in section VI,
results of the energy consumption evaluations are discussed
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Fig. 1. Driver personalized vehicle energy consumption evaluation frame-
work. Comparison of the estimation of the energy consumption of a vehicle
based on a recorded vehicle velocity profile and a simulated vehicle velocity
profile.

for various situations. Section VII is dedicated to application
proposals.

II. PERSONALIZED ENERGY CONSUMPTION EVALUATION

Energy consumption (EC) optimization is a major topic in
vehicle development. In order to correctly dimension compo-
nents and to optimize control systems, realistic driving of a
virtual vehicle in a variety of environments is a key feature.
Figure 1 depicts the overall architecture of the proposed
energy consumption evaluation system. The proposed system
explicitly includes the driver-vehicle model which has two
main inputs: a specific set of parameters depending on the
driver, and a velocity pattern of the leading vehicle. Definition
of the driver-vehicle model is described in section III-B. The
ego-vehicle velocity profile is calculated as the output of the
driver-vehicle model. Finally, the vehicle energy consumption
is estimated by using a detailed car model (in this work, IPG
Carmaker is used).

As shown in Figure 1, the driver-vehicle model is validated
by comparing experimental energy consumption to simu-
lated driver-vehicle energy consumption. Thus, the proposed
framework enables us to evaluate the energy consumption
of different drivers, depending on the choice of the leading
vehicle velocity pattern and depending on a vehicle powertrain.

Obviously, careful selection of the driver-vehicle model is
a central issue in this framework. The driver-model should
be simple enough to be used in optimization procedures, and
precise enough to realize accurate reproduction of the driver-
vehicle behavior. Model selection, definition and implementa-
tion are detailed in the following section.

III. DEFINITION OF DRIVER-VEHICLE MODEL

The personalized driver-vehicle model is developed in this
paper based on the probability weighted autoregressive exoge-
nous (PrARX) model [31]. PrARX model is a modified ver-
sion of piecewise autoregressive exogenous (PWARX) model,
which is one of the well-known identification models of hybrid
dynamical systems. The main difference between these two
ARX models is the definition of mode switching mechanism.
Although the PWARX model has discrete (discontinuous)
mode switching, the PrARX model has soft (continuous) mode
switching defined by a probabilistic softmax function. The soft
switching mechanism avoids to have discontinuity in the

model output during mode transition. The PrARX model
also allows adaptive parameter estimation, which implies the
possibility of the progressive revision of the model parameters
depending on the change of the driving characteristics and/or
the driving environment. Although the PrARX model has some
advantages described above, it has some drawbacks, such as
difficulty in initial parameters setting, and instability observed
when the model is embedded in the closed loop analysis. This
study focuses on the analysis of a single following vehicle.
Vehicle platooning modeling would require more in-depth
analysis of information propagation on the modeled string.
The following sections describe the detail of the definition of
the model and the identification procedure, which is updated
from the one in [27] to embed the PrARX model in the energy
consumption system.

A. Definition of PrARX Model

This section briefly reviews the PrARX model. The PrARX
model is a hybrid model composed of several ARX sub-
models, named modes. The output is defined by weighted
summation of the output of each ARX model. The weighting
function expresses the probability of the region to be in each
mode. Thus the PrARX model is defined by the set of ARX
model parameters, and by the weighting function parameters.
PrARX model are formally defined by:

yk = f Pr AR X (rk) =
s∑

i=1

Piθ
T
i ϕk (1)

where rk ∈ R
n defines the regressor vector (input vector)

with k ∈ N the time index, ϕk = [r T
k 1]T ∈ R

n+1, yk ∈ R
q ,

θT
i ∈ R

q∗(n+1)(i = 1, . . . , s) is the parameter vectors defining
the i th ARX modes, s defines the number of modes, and
Pi ∈ R

q is the weighting function expressing the probability of
the q outputs. Pi is defined by the following softmax function:

Pi = exp(ηT
i ϕk)∑s

j=1 exp(ηT
j ϕk)

ηs = 0 (2)

where ηi (i = 1, . . . , s −1) is the parameter vectors specifying
the probabilistic (soft) partition between modes.

B. PrARX Model for Vehicle-Following Task

The goal of this study is to reproduce personalized vehicle
behavior in vehicle-following task. The PrARX model is used
to model the integrated behavior of the driver and vehicle
dynamics. The measured data of leading vehicle and the
model output are used to create the regressor vector (see
Figure 2). The PrARX model is used to predict the outputs
of the integrated behavior at k + τ based on the current
input at time k. A delay τ is applied to the model input to
represent the drivers’ cognitive reaction time (300ms [1], [4]).
Then, the output of each ARX model and the mode prob-
abilities (weighting parameters) are calculated by using the
PrARX model. The PrARX model with input-delay is
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Fig. 2. Driver-vehicle model, expressed as the feed-back implementation of
a PrARX model with input-delay. Relation between inputs and outputs.

given by:

ik = finputs (sk, yk)

rk = ik−τ

yk = fPr AR X (rk) (3)

where ik is the regressor vector without delay, finputs (·, ·) is
the function to calculate the PrARX model inputs without
delay based on the sensor information sk and on the model
output yk . rk is the regressor vector for the PrARX model,
and yk represents the input-delay PrARX model output.

Definition of the driver-vehicle model is given as follows:

ik = finputs (sk, yk) with

finputs (sk, yk) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Accelerationk

Rangek

RangeRatek
1

H Tk + 1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yk

sk

ṡk ∑k
t=0 yt

sk + ∑k
t=0 yt

rk = ik−τ

yk = fPr AR X (rk)

H Tk = Rangek

V eloci tyk
= sk∑k

t=0 yt
(4)

where H T refers to the headway time.
The choice of variables in (4) is discussed in III-C.

C. Parameter Identification

Parameter identification of the PrARX model is based on
a steepest descent method [31]. The cost function is defined
by the Euclid norm of the output error in the identification
scheme in [31]. Although both parameters in the ARX model
and the softmax function can be identified simultaneously
by a single algorithm, this identification scheme is a non-
convex optimization problem. In order to increase the level
of reliability and accuracy of the identified of the PrARX
model, a two-stage identification process is newly developed
in this work. In the first stage, a classification technique is

applied to the data, and PrARX hyperplans parameters are
identified. The set of data is separated into subsets depending
on the preferable mode separation, and the mode separation
parameters η are identified with a multinomial logistic regres-
sion method. In the second stage, the parameters of the ARX
models θ are identified using a steepest descend method. The
advantage of using classification over clustering in the case
of applying a multi-mode model to analyze realistic driving
data lies in the nature of the observed data. If constancy
in the physical understanding of the modes parameter is
desired, data clusters must have high margin hyperplanes
separation, enabling similar data clusters formation for every
identification. Unfortunately, the available data does not show
clear separation pattern. Thus, in this work, subjective prior-
knowledge about the data classification is assumed, based
on the vehicle acceleration, to describe the following driving
situations: acceleration, deceleration, and constant speed.

1) Choice of Regressor Vector: Reproduction of the driving
behavior depends not only on the structure of the model, but
also on the selection of explanatory variables of the model.
The regressor vector must have strong relation with the output
of the ARX models. In addition, the regressor vector must be
able to distinguish the driving modes, i.e., to represent the
partition between modes.

In this work, the output of the model is set to be the
longitudinal acceleration of the vehicle because our goal
is the evaluation of the energy consumption. Generally, it
seems natural to select the range between leading vehicle,
and range-rate as elements of regressor vector in the case of
vehicle following task. In addition, some indices have also
been considered as variable, which express the feeling of the
driver [1] (KDB [32], PRE (Perceptual Risk Estimate) [33]).
These indices are commonly used to trigger emergency sys-
tems (e.g. emergency braking), however, it is difficult to use
them for behavior reproduction. In this work, we tried to
find the explanatory variables that can be linked as simply
as possible to the output of the system (vehicle acceleration).
To understand the necessary input variables for ARX models,
multivariable linear regression statistical test was performed
in each mode based on real world recorded data. According
to the values of the standard error of the coefficient estimate
and on the p-values, it was observed that the past acceleration
and range-rate were the two most significant variables to
estimate the current acceleration value. The range-rate is a
fundamental variable to calculate the output acceleration of the
vehicle (consistent p-value lower than 10−8). This result is also
reported in the Gazis-Herman-Rothery (GHR) model [3]. The
past acceleration is obviously linked to the current acceleration
due to the low dynamics of the car (lower than 0.5Hz), and the
fact that the model is running at 10Hz. Headway time (time
to collision) also has shown strong importance. The range was
not directly linked to the model output, but is used in the mode
determination process. Note that the magnitude of the linkage
between some variables and output highly depends on driver
and on the driving mode.

Thus, the selected inputs are the acceleration of the driven
vehicle [m/s2], distance between the driver and leading
vehicles (“range” [m]), relative velocity between the vehicles
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Fig. 3. 3 modes PrARX input-delay model output depending on the selected
learning regressor vector. The label “Recorded” represents the reference
recorded vehicle following profile. Definition of the labels is in Table 1.

TABLE I

REGRESSOR VECTORS DEFINITION FOR FIGURE 3

(“range-rate” [m/s]), and an adjusted inverse of the headway
time ((velocity+1)/range) [1/s] [34], [35]. The inverse of the
headway time was adjusted to provide information even when
the vehicle is stopped. Headway time provides an improved
stability to the output model response as stated later. The
identified parameters of the corresponding variable can be
interpreted to represent the driving characteristics of each
driver. For example, aggressive drivers tend to base their
judgement on the range and the range-rate, while soft drivers
rely mostly on the headway time.

To provide more information about the effectiveness of
the selected input parameters, Figure 3 shows the verification
results of the driver-vehicle model with input delay in the cases
of different regressor vector choice. The regressor vectors
definition are in TABLE I:

2) Data Classification for Mode Definition: Classification is
used to determine the modes of the PrARX model. According
to the distribution of the recorded driving data and to the
energy estimation error of the resulting model, we decided
to classify the data into three clusters based on the vehicle
acceleration. The defined mode definition is shown in Table II.
This segmentation implies to differentiate low-band dynam-
ical driving mode and high-band dynamical driving modes.
High-band dynamical driving modes are representative of the
acceleration and deceleration phases. To avoid sudden mode
changes and take advantage of the smooth mode switching of
the PrARX model, overlapping between the simple clusters is
considered on a 0.1 m/s2 range of the acceleration data.

Figure 14 shows the velocity and acceleration profile of the
output of simulation using the 3-modes PrARX model with
input-delay, which is identified from real-world data. It can

TABLE II

LEARNING DATA CLUSTERS DEFINITION

Fig. 4. Acceleration error of the input-delay model output on the left, and
velocity error on the right, depending on the type of regressor vector. The
error is the Euclid norm of the difference between the reference data and the
identified 3 modes PrARX input-delay model output.

be observed that the behavior reproduction is successfully
made, and it is expected to play a key role for precise energy
consumption evaluation. The “Mode probability” graph in
Figure 14 illustrates the instantaneous mode probability which
is used as a weighting factor for the calculation of PrARX
model output.

Without range or range-rate, the driver-vehicle behavior
becomes unstable particularly in high-band dynamics domain.
The headway time helps to stabilize the behavior. To get more
information about the precision of the reproduced vehicle
dynamics, Figure 4 shows the error in terms of reproduced
accelerations and reproduced velocities, that is Euclid norm
of the difference between the recorded vehicle data and the
output of the simulation using driver-vehicle model. According
to the error bar graphs, we can see that the selected regressor
vector (i.e., RegV) provides the best acceleration and velocity
reproduction performance among the considered set. Since
the selected regressor vector does not depend on the absolute
velocity of the vehicle, different driver models can be identi-
fied depending on various velocity spans, congestion states or
road types.

3) Learning Data Decimation: The data used for this study
has been recorded from a driving simulator and from real
world experiments. Due to the amount of data (30 minutes
at 10Hz) and the distribution of the data, a simple technique
has been developed to remove possible redundant data, and
thus to reduce the computational burden for the identification
of the model parameters while realizing more homogeneous
data repartition.

The process consists in placing the regressor data into cells
based on acceleration. Width of the cells in constant, thus only
the number of elements in the cells vary. Then the data of each
cell is independently decimated based on two factors: a global
maximal decimation factor, and the average number of data in
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Fig. 5. Influence of the selected decimation factor on the proportion of
learning data in the classification modes. Number of data vectors in each
cluster is specified.

Fig. 6. Influence of the selected maximal decimation factor on the model
parameters identification duration.

the decimated cell.
Figures 5 and 6 illustrate the increase of the data repartition

homogeneity thanks to the dynamical data decimation, and the
reduction of computation time of this technique. As observed
in Figure 6, the calculation time decreases according to the
increase of the decimation factor. A minimum amount of data
in each identified mode is set as a threshold to select the
appropriate decimation factor during the PrARX parameters
identification process. The only drawback of this method is
the fact that outliers in high dynamical bands have low chance
to be removed and thus become significantly important in the
identification process. Careful prior learning data processing
is required.

4) Overall Flowchart of Identification Process: Overall
flowchart of the identification process is depicted in Figure 7.
Two types of data sets are used during the identification
process. The first one is for the parameter identification,
and the other one is for the model verification (simulation).
The first data set contains as much information as possible.
This data set is manually preprocessed to remove noise and
outliers. Then data is decimated to reduce the computation
burden of the identification process, while ensuring to have
enough data in each cluster. The identification step takes about
3 minutes on a personal computer (CPU i7 870, RAM 8Gb).
The second data set (velocity profile of leading vehicle) is used
to run the simulation using PrARX model with input-delay.
The velocity profile of the leading vehicle used for verification
can be any velocity profile, as long as the underlying dynamics
are coherent with the first data set.

Fig. 7. Flowchart of the PrARX input-delay model identification process.

Fig. 8. View from the examinee in the DS.

IV. EXPERIMENTAL SETUP FOR DATA COLLECTION

In order to get data from different driving styles in various
situations, two types of experimental setups were used for
data collection. At first, data was collected by using a driving
simulator, which enabled us to control all the environmental
parameters. Then a real world experiment was executed to get
realistic driver-vehicle dynamics.

A. Data Collection by Using Driving Simulator

In order to exactly control the velocity pattern of the leading
vehicle, i.e., to realize a broad variety of driving situations,
data collection was executed by using a driving simulator (DS)
shown in Figure 8. The DS is composed of a real vehicle
interior and HMI devices, and the visualized image is projected
on three wide screens. This configuration provides 180 degree
vision and good driver immersion.

The created environments are: a typical residential area
from real-world map, and a 4-lane oval-loop highway.
Different velocity profiles of leading vehicle have been imple-
mented to reproduce the different driving situations.



WILHELEM et al.: ENERGY CONSUMPTION EVALUATION BASED ON A PERSONALIZED DRIVER–VEHICLE MODEL 1473

Fig. 9. Velocity patterns of the leading vehicles used in the DS experiments.

Fig. 10. View from the driver of the leading vehicle. The velocity profile
display system is squared and zoomed on the right. Current velocity, future
velocity and desired velocity plots are displayed.

Four non-professional examinees executed the following
task with different levels of aggressiveness. The leading vehi-
cle ran according to three different velocity patterns designed
in-house to represent typical driving scenarios (See Figure 9):

- 30 to 70 km/h pattern: representing city use.
- 80 to 110 km/h pattern: representing extra-urban/Japan

highways.
- 100 to 150 km/h pattern: representing European

highways.

B. Data Collection From Real-World Driving

In order to get more realistic driver-vehicle dynamics,
experiments were executed in real-world. Three different
examinees drove on a highway following a leading vehicle.
Each driver repeated the experiment twice. The leading vehicle
was equipped with a GPS based reference velocity profile
display system which showed a predefined velocity pattern on

Fig. 11. Reference velocity profile of the leading vehicle used for real world
experiment.

Fig. 12. Engine mapping of the 130hp petrol powertrain (IPG Carmaker).
The blue line represents the torque at full load, and colored dots the specific
fuel consumption.

a smartphone (see Figure 10). The ego-vehicle was equipped
with a CAN bus acquisition tool, and a millimeter-wave radar.
The CAN bus acquisition tool was used to record the GPS
position, and the velocity and acceleration at the wheel of the
vehicle. The millimeter-wave radar was used to get precise
information on the distance to the leading vehicle, and to
calculate the relative velocity.

A velocity profile reference shown in Figure 11 was created.
This velocity profile included a wide range of accelerations
and decelerations in order to include all the possible
driving situations. Emergency braking was not performed
in this experiment since the model was not designed
for such a situation. Low velocity under 5 m/s were
excluded from the identification data since the driving behav-
ior changes significantly in traffic jams and in creeping
situations.

V. ENERGY CONSUMPTION EVALUATION

The energy consumption of the vehicle is estimated by
inputting a vehicle velocity pattern, which is calculated by
using the driver-vehicle model, to the car dynamics simulation
software Carmaker (IPG Automotive), as shown in Figure 1.
Carmaker is known to be able to calculate the fuel consump-
tion with high accuracy based on the different car losses,
including the engine efficiency mapping of the vehicle. This
software is industry standard, and it is used by the biggest
manufacturers to model car dynamics and powertrains.

The fuel consumption volume flow ˙vol f is calculated by

˙vol f = ṁF
(
ωEng , T rq Eng

) ∗ ∣∣PEng
∣∣

ζF ∗ 3.6 ∗ 109 (5)

where ṁF (ωEng , T rq Eng) is the specific mass flow extracted
from the engine mapping (see Figure 12), ωEng the engine
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TABLE III

DS EXPERIMENT FUEL CONSUMPTION VALUES [l/100 km]

TABLE IV

DS EXPERIMENT FUEL CONSUMPTION ESTIMATION ERROR [%]

frequency of rotation, and T rq Eng the torque load at the crank
shaft. ζF is the petrol density (0.75 kg/L), and PEng is the
engine output power. Eq.5 is provided by IPG Carmaker.

The speed profile tracking function of Carmaker can realize
very precise reproduction of any velocity pattern. The sim-
ulated environment is a flat straight line, and the selected
powertrain are 250hp and 130hp petrol engines for the DS and
real-world driving, respectively. The average velocity differ-
ence between the evaluated pattern and the reproduced pattern
is 0.3km/h and the median absolute deviation is 0.1km/h.

Using the energy consumption evaluation scheme shown in
Figure 1, the fuel consumption of the different vehicles can
be assessed and compared, considering the variety of driving
characteristics.

VI. RESULTS AND ANALYSIS

In this section, results of fuel consumption analysis are
shown and discussed.

Fuel consumption modeling error is calculated by compar-
ing the fuel consumption estimated from the driver-vehicle
model, and the fuel consumption estimated from the reference
velocity profile used to train the driver-vehicle model. The
formula is detailed in equation (6).

errorFC[%] = FCestimate − FCreference

FCreference
∗ 100 (6)

Here, FC stands for fuel consumption.

A. Results Using Data From DS

Tables III and IV show the fuel consumption estimation
values and their estimation errors, respectively.

The estimation error of the fuel consumption varies from
−10.7% to −1.6%, with an average error of −4.6% and an
absolute standard deviation of 3.4%. The energy consumption
value is underestimated due to the low-pass characteristics of

Fig. 13. Velocity of the driver-vehicle model output. DS European highway
profile with aggressive following. In black the leading vehicle, in blue the
recorded ego vehicle, in orange the driver-vehicle model simulated ego
vehicle. The oscillatory behavior of the aggressive driver during constant
velocity phases is squared in grey.

TABLE V

REAL WORLD EXPERIMENT FUEL CONSUMPTION EVALUATION

ARX models. The lack of acceleration feeling of vehicle in
the DS makes the driver act quite aggressively, and examinees
struggled to follow the leading car with creating acceleration
oscillations in usual low dynamical band. Figure 13 shows
these oscillations squared in black. This behavior cannot be
correctly modeled by the PrARX input-delay model, due to
the absence of direct path between the input and the output.

B. Results Using Data From Real-World Driving

Table V shows the fuel consumption evaluation values
for three drivers on real-world measurement. “Lead vehicle”
represents the fuel-consumption of the leading car. Due to
the impossibility to exactly realize the desired leading vehicle
velocity profile (shown in Figure 11), leading vehicle energy
consumption is calculated for each driver-vehicle model using
realized velocity profile. “Follow recorded” represents the fuel
consumption of the vehicle used for driver-vehicle model
identification, and “PrARX input-delay” represents the fuel
consumption of the simulated driver-vehicle model.

In Table V, we can observe good results in energy consump-
tion estimation. The average estimation error is −1.9%, and
the absolute standard deviation 1.5%. The energy estimation
error is much lower in real-world environment than in the
driving simulator experiment.

Figure 14 illustrates the driver-vehicle model dynamics
reproduction ability based on real-world recorded data. The
low estimation error of energy consumption in real-world
experiment is due to the fact that examinees seem to drive
the vehicle with lower frequency dynamics in real world, so
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Fig. 14. Velocity, acceleration, and modes probability weight of an identified 3 modes PrARX input-delay model. “Rec. leading vehicle” represents the
recorded leading vehicle used for simulation, “Rec. following vehicle” represents a section of the recorded ego vehicle of the learning phase, “Feed-forward
model” is the output of the PrARX model when using pre-calculated learning data regressor vector, without feedback loop, “Input-delay model” is the output
of the drivervehicle model by using “Rec. leading vehicle” for the lead vehicle.

that the recorded and reproduced signals are no more limited
by the low pass behavior of the PrARX input-delay model.
Moreover the observed correlation between the leading vehicle
and ego-vehicle is much better than in the driving simulator.

VII. APPLICATION EXAMPLES

It could be observed in the previous sections that the PrARX
input-delay model is able to provide ego-vehicle dynamics
with enough precision to evaluate first order energy consump-
tion of the vehicle. The computation cost of the PrARX input-
delay model being very low, online use in a vehicle is possible.
Although the parameter identification process requires high
computational cost, thanks to the increase of V2X commu-
nication in recent years [36], parameter identification can be
done remotely on most cars without any implementation on
the vehicle computer system. Based on this information, two
in-vehicle and one traffic flow model oriented applications are
proposed in this section. The first application can be described
as a customer decision assistance system for the choice of
an appropriate powertrain in buying new vehicle. The second
application aims to help the driver to reduce his fuel or elec-
tricity consumption by challenging his behavior with some-
body else’s. The last application is a method to evaluate energy
consumption of vehicles embedded in a traffic flow model.

A. Customer Decision Assistance for Powertrain Choice

The first application of the developed driver-vehicle model
with energy consumption estimation is based on the ability of
the model to reproduce a user’s behavior on a variety of lead
velocity patterns, as long as driving situation is equivalent.
Each different vehicle powertrain has specific high and low
efficient zones. Depending on the human driving manner,

different types of powertrains will be adapted to different
users. The goal of this application is to help customers to
select an appropriate vehicle powertrain depending on their
individual driving habits.

The typical situation places a customer comparing some
possible new vehicles. The parameters of customer’s vehicle-
following behavior model have already been identified during
daily driving. These parameters can then be applied to classic
homologation cycles or any usual velocity pattern. Knowing
that every manufacturer is able to provide the powertrain
performance map of their vehicles, the customer will be able
to receive a personalized estimation of the energy consumption
of the vehicle depending on his personal behavior.

B. Social Eco-Driving Challenge

The second proposed application of the behavior person-
alized energy consumption estimation model is based on
the ability of the driver-vehicle model to reproduce different
driving behaviors under identical lead velocity pattern. The
idea behind social eco-driving challenge is based on the
concept of social games [34]. The aim of this application is
to get people interested in eco-driving by challenging them to
outperform others. Setting goals to reach their best results in
the form of eco-indicators is the main focus to obtain good
efficiency results [30]. Thus the combination of goal reaching
and the interest of social game could assist the development of
a platform which proposes advice to help drivers to reduced
energy consumption.

The PrARX input-delay model can be used to calculate
the reaction of different drivers online, and thus compare
in real time the energy consumption of virtual drivers.
As an example, comparison of behavior in the cases of
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Fig. 15. A leading vehicle from real-world, followed by two different
PrARX input-delay models. The PrARX input-delay models are representative
of an aggressive and a soft driver. These models have been identified from
distinctive driving measurements.

TABLE VI

COMPARISON OF FC OF D-VMs FOLLOWING DS RECORDED VEHICLE 1

using aggressive driver model and soft driver model is shown
in Figure 15. The estimated energy consumption are simulated
and compared based on two leading vehicle velocity patterns.
The driver-vehicle parameters have been identified from
city-center driving situation in section VI. The selected
leading vehicle velocity patterns are: a DS recorded velocity
profile, and a velocity pattern measured in real-world (R-W)
experiment.

Tables VI and VII show the relative difference of fuel
consumption between the two driver-vehicle models (D-VMs)
with different leading vehicle velocity patterns.

The fuel consumption comparisons in Tables VI and VII
show that the driver models keep their own relative energy
consumption behavior independently on the leading vehicle
velocity profile. The soft D-VM is consistently 17% more
energy efficient than the aggressive D-VM. Therefore, the
PrARX input-delay model is a good candidate to compare
drivers based on a selected driving situation.

C. Estimation of Vehicle Energy Consumption
in Traffic Flow Model

Traffic flow models enable users to analyze wide road
networks dynamical behavior depending on the road topology,
the traffic flow density, the basic vehicle characteristics and
other macroscopic parameters [7], [20], [38], [39]. Neverthe-
less, conventional driver-vehicle models used in traffic flow
simulation cannot provide realistic microscopic behavior due
to the lack of personalized driving characterization.

PrARX input-delay model can be used as an adaptive cruise
control model when implemented with the Virtual Leading
Vehicle (Vlv-ACC) system [40]. Vlv-ACC system is based on
the philosophy of action-point microscopic traffic flow models.
Thus, by embedding the developed driver-vehicle model in
the Vlv-ACC system, an interesting traffic flow model can
be developed. This model can provide more precise and user
personalized driver-vehicle dynamics of certain road sections,
and as the results, energy consumption of particular vehicles
can be assessed in the context of traffic flow.

TABLE VII

COMPARISON OF FC OF D-VMs FOLLOWING R-W RECORDED VEHICLE 2

VIII. CONCLUSION

This paper propose a new method to accurately estimate
energy consumption in vehicle-following task by using a
personalized driver-vehicle behavior model. The driver-vehicle
behavior model is a PrARX model, which is one of the
hybrid dynamical system models, with an input time-delay
integration. In particular, careful selection of the regressor
vector and dynamical input decimation enabled us to realize
robust identification with small computational cost. Then the
vehicle energy consumption was calculated based on the model
output signals. The proposed driver-vehicle model leads to
average fuel consumption estimation error of 1.9% and 1.5%
standard deviation in real-world measurement cases. Based on
this method, possible application domains are: a powertrain
choice assistance system for car buyers, an online energy
consumption evaluation system based on driver models, and a
method to estimate energy consumption of vehicles in a traffic
flow modeling. The realization of these applications and exten-
sion to the different driving situations are our future works.

REFERENCES

[1] C. C. Macadam, “Understanding and modeling the human driver,” Swets
Zeitlinger, Vehicle Syst. Dyn., vol. 40, nos. 1–3, pp. 101–134, 2003.

[2] J. Bengtsson, “Adaptive cruise control and driver modeling,”
Ph.D. dissertation, Dept. Autom. Control, Lund Inst. Technol., Lund,
Sweden, Nov. 2001.

[3] M. Brackstone and M. McDonald, “Car-following: A historical review,”
Transp. Res. F, Traffic Psychol. Behaviour, vol. 2, no. 4, pp. 181–196,
1999.

[4] P. G. Gipps, “A behavioural car-following model for computer simula-
tion,” Transp. Res. B, Methodol., vol. 15, no. 2, pp. 105–111, 1981.

[5] M. Bottero, B. D. Chiara, F. Deflorio, G. Franco, and E. Spessa,
“Model-based approach for estimating energy used by traffic flows
on motorways with ITS,” IET Intell. Transp. Syst., vol. 8, no. 7,
pp. 598–607, Nov. 2014.

[6] P. W. G. Newman and J. R. Kenworthy, “The transport energy trade-off:
Fuel-efficient traffic versus fuel-efficient cities,” Transp. Res. A, General,
vol. 22, no. 3, pp. 162–174, May 1988.

[7] J. J. Olstam and A. Tapani, “Comparison of car-following mod-
els,” Swedish Nat. Road Transp. Res. Inst., Linköping, Sweden,
Tech. Rep. 960A, 2004.

[8] A. Kostikj, M. Kjosevski, and L. Kocarev, “Impact of mixed traffic in
urban environment with different percentage rates of adaptive stop&go
cruise control equipped vehicles on the traffic flow, travel time, energy
demand and emission,” in Proc. IEEE 18th Int. Conf. Intell. Transp.
Syst., Sep. 2015, pp. 1601–1608.

[9] S. Stockar, V. Marano, M. Canova, G. Rizzoni, and L. Guzzella,
“Energy-optimal control of plug-in hybrid electric vehicles for real-
world driving cycles,” IEEE Trans. Veh. Technol., vol. 60, no. 7,
pp. 2949–2962, Sep. 2011.

[10] M. Schori, T. J. Boehme, B. Frank, and B. P. Lampe, “Optimal
calibration of map-based energy management for plug-in parallel hybrid
configurations: A hybrid optimal control approach,” IEEE Trans. Veh.
Technol., vol. 64, no. 9, pp. 3897–3907, Sep. 2015.

[11] H. Khayyam, “Stochastic models of road geometry and wind condition
for vehicle energy management and control,” IEEE Trans. Veh. Technol.,
vol. 62, no. 1, pp. 61–68, Jan. 2013.

[12] R. Shankar and J. Marco, “Method for estimating the energy con-
sumption of electric vehicles and plug-in hybrid electric vehicles under
real-world driving conditions,” IET Intell. Transp. Syst., vol. 7, no. 1,
pp. 138–150, Mar. 2013.



WILHELEM et al.: ENERGY CONSUMPTION EVALUATION BASED ON A PERSONALIZED DRIVER–VEHICLE MODEL 1477

[13] P. G. Howlett and P. J. Pudney, Energy-Efficient Train Control. Springer,
1995.

[14] P. G. Howlett, P. J. Pudney, and X. Vu, “Local energy minimization
in optimal train control,” Automatica, vol. 45, no. 11, pp. 2692–2698,
Nov. 2009.

[15] Y. Huang, L. Yang, T. Tang, F. Cao, and Z. Gao, “Saving energy and
improving service quality: Bicriteria train scheduling in urban rail transit
systems,” IEEE Trans. Intell. Transp. Syst., to be published. [Online].
Available: http://dx.doi.org/10.1109/TITS.2016.2549282

[16] J. Yin, T. Tang, L. Yang, Z. Gao, and B. Ran, “Energy-efficient
metro train rescheduling with uncertain time-variant passenger demands:
An approximate dynamic programming approach,” Transp. Res. B,
Methodol., vol. 91, pp. 178–210, Sep. 2016.

[17] R. Wiedemann, Simulation des Strassenverkehrsflusses (Schriftenreihe
des Instituts für Verkehrswesen der Universität Karlsruhe). Karlsruhe,
Germany: Band 8, 1974.

[18] B. Higgs, M. M. Abbas, and A. Medina, “Analysis of the Wiedemann
car following model over different speeds using naturalistic data,” in
Proc. 3rd Int. Conf. Road Safety Simulation, 2011.

[19] S. Glaser, B. Vanholme, S. Mammar, D. Gruyer, and L. Nouveliere,
“Maneuver-based trajectory planning for highly autonomous vehicles on
real road with traffic and driver interaction,” IEEE Trans. Intell. Transp.
Syst., vol. 11, no. 3, pp. 589–606, Sep. 2010.

[20] S. Panwai and H. Dia, “Comparative evaluation of microscopic car-
following behavior,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 3,
pp. 314–325, Sep. 2005.

[21] C. C. MacAdam, “Application of an optimal preview control for sim-
ulation of closed-loop automobile driving,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-11, no. 6, pp. 393–399, Jun. 1981.

[22] J. Ackermann, J. Guldner, W. Sienel, R. Steinhauser, and V. I. Utkin,
“Linear and nonlinear controller design for robust automatic steer-
ing,” IEEE Trans. Control Syst. Technol., vol. 3, no. 1, pp. 132–143,
Mar. 1995.

[23] S. Sekizawa et al., “Modeling and recognition of driving behavior based
on stochastic switched ARX model,” IEEE Trans. Intell. Transp. Syst.,
vol. 8, no. 4, pp. 593–606, Dec. 2007.

[24] H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical
systems,” IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 461–474,
Apr. 1998.

[25] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error
approach to piecewise affine system identification,” IEEE Trans. Autom.
Control, vol. 50, no. 10, pp. 1567–1580, Oct. 2005.

[26] R. Terada, H. Okuda, T. Suzuki, K. Isaji, and N. Tsuru, “Multi-scale
driving behavior modeling using hierarchical PWARX model,” in Proc.
IEEE Conf. Intell. Transp. Syst., Sep. 2010, pp. 1638–1644.

[27] P. Angkititrakul, C. Miyajima, and K. Takeda, “Modeling and adaptation
of stochastic driver-behavior model with application to car following,”
in Proc. IEEE Intell. Veh. Symp. (IV), Jun. 2011, pp. 814–819.

[28] J. Sjöberg et al., “Nonlinear black-box modeling in system identification:
A unified overview,” Automatica, vol. 31, no. 12, pp. 1691–1724,
Dec. 1995.

[29] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[30] T. Stillwater and K. S. Kurani, “Drivers discuss ecodriving feedback:
Goal setting, framing, and anchoring motivate new behaviors,” Transp.
Res. F, Traffic Psychol. Behaviour, vol. 19, pp. 85–96, Jul. 2013.

[31] H. Okuda, N. Ikami, T. Suzuki, Y. Tazaki, and K. Takeda, “Modeling
and analysis of driving behavior based on a probability-weighted ARX
model,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 1, pp. 98–112,
Mar. 2013.

[32] T. Wada et al., “Analysis of drivers’ behaviors in car follow-
ing based on performance index for approach and alienation,”
SAE Tech. Paper 2007-01-0440, 2007.

[33] H. Aoki, H. Yasuda, and N. Van Quy Hung, “Perceptual risk esti-
mate (PRE): An index of the longitudinal risk estimate,” in Proc. 22nd
Int. Tech. Conf. Enhanced Safety Veh. Conf., 2011, paper 11-0121-O.

[34] L. Yan and W. Dianhai, “Minimum time headway model by using safety
space headway,” in Proc. IEEE World Autom. Congr., Jun. 2012, pp. 1–4.

[35] T. J. Ayres, L. Li, D. Schleuning, and D. Young, “Preferred time-
headway of highway drivers,” in Proc. IEEE Intell. Transp. Syst.,
Aug. 2001, pp. 826–829.

[36] L. Zhou, “The advance of intelligent mobility and co-creation of
ecosystems,” in Proc. Connected Car Jpn. Keynote, Autom. World, 2015.

[37] D. Y. Wohn, C. Lampe, R. Wash, N. Ellison, and J. Vitak, “The
‘S’ in social network games: Initiating, maintaining, and enhancing
relationships,” in Proc. 44th Hawaii Int. Conf. Syst. Sci., 2001, pp. 1–10.

[38] L. Elefteriadou, An Introduction to Traffic Flow Theory.
Springer, 2014.

[39] A. Schadschneider, “The Nagel–Schreckenberg model revisited,” Eur.
Phys. J. B, Condens. Matter Complex Syst., vol. 10, no. 3, pp. 573–582,
1999.

[40] T. Wilhelem, H. Okuda, B. Levedahl, T. Suzui, and T. Haraguchi,
“Behavior personalized adaptive cruise control using probability-
weighted ARX model,” in Proc. 22nd ITS World Congr., Oct. 2015.

Thomas Wilhelem was born in Paris, France, in
1990. He received the master’s degree in solid
mechanics and automobile and railway transporta-
tion from ENSTA ParisTech, Palaiseau, France.
He is currently working toward the Ph.D. degree
with the Department of Mechanical Science and
Engineering, Nagoya University, Nagoya, Japan.

His research interests include the modeling and
analysis of human driving behavior, with a focus on
the ability to reproduce personalized fuel consump-
tion.

Hiroyuki Okuda was born in Japan in 1982.
He received the B.E. and M.E. degrees in advanced
science and technology from the Toyota Techno-
logical Institute, Japan, in 2005 and 2007, respec-
tively, and the Ph.D. degree in mechanical science
and engineering from Nagoya University, Japan,
in 2010.

From 2010 to 2012, he was a Post-Doctoral
Researcher with CREST, JST. He is currently an
Assistant Professor with the Green Mobility Col-
laborative Research Center, Nagoya University. His

research interests are in the areas of system identification of hybrid dynamical
system and its application to modeling of human behavior, design of human
centered mechatronics, and biological signal processing.

Dr. Okuda is a member of the IEEJ, SICE, and JSME.

Blaine Levedahl was born in Manchester, CT, in
1976. He received the B.S., M.S., and Ph.D. degrees
in aerospace engineering in 2001, 2003, and 2007,
respectively, and the M.S. degree in electrical engi-
neering in 2010.

During his academic career, he had the opportu-
nity to work on biologically inspired flight vehi-
cles with the NASA Langley Research Center and
on underwater vehicles with Northrop Grumman
Newport News. Starting his professional career in
2007, he had the pleasure of working on autopilot

development and integration testing with Honda Aircraft Company. From
2012 to 2015, he was a Designated Associate Professor, Nagoya University.
Since 2015, he has been working with various researchers on various modeling
and control problems.

Tatsuya Suzuki (M’11) was born in Aichi, Japan,
in 1964. He received the B.S., M.S., and Ph.D.
degrees in electronic mechanical engineering from
Nagoya University, Japan in 1986, 1988, and 1991,
respectively.

From 1998 to 1999, he was a Visiting Researcher
with the Mechanical Engineering Department, Uni-
versity of California at Berkeley. He is currently
a Professor with the Department of Mechanical
Science and Engineering, Nagoya University, the
Vice Director of the Green Mobility Collaborative

Research Center, Nagoya University, and a Principal Investigator with CREST,
JST. He received the best paper award in International Conference on
Advanced Mechatronic Systems 2013 and the outstanding paper award in
International Conference on Control Automation and Systems 2008. He also
received the journal paper award from the IEEJ, the SICE, and the JSAE,
in 1995, 2009, and 2010, respectively. His research interests are in the
areas of analysis and design of hybrid dynamical systems and discrete event
systems particularly focusing on the human-centric mobility systems and
energy management systems.

Dr. Suzuki is a member of the SICE, ISCIE, IEICE, JSAE, RSJ, JSME,
and IEEJ.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Aachen-Bold
    /ACaslon-AltBold
    /ACaslon-AltBoldItalic
    /ACaslon-AltItalic
    /ACaslon-AltRegular
    /ACaslon-AltSemibold
    /ACaslon-AltSemiboldItalic
    /ACaslon-Bold
    /ACaslon-BoldItalic
    /ACaslon-BoldItalicOsF
    /ACaslon-BoldOsF
    /ACaslonExp-Bold
    /ACaslonExp-BoldItalic
    /ACaslonExp-Italic
    /ACaslonExp-Regular
    /ACaslonExp-Semibold
    /ACaslonExp-SemiboldItalic
    /ACaslon-Italic
    /ACaslon-ItalicOsF
    /ACaslon-Ornaments
    /ACaslon-Regular
    /ACaslon-RegularSC
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /ACaslon-SemiboldItalicOsF
    /ACaslon-SemiboldSC
    /ACaslon-SwashBoldItalic
    /ACaslon-SwashItalic
    /ACaslon-SwashSemiboldItalic
    /AGaramondAlt-Italic
    /AGaramondAlt-Regular
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-BoldItalicOsF
    /AGaramond-BoldOsF
    /AGaramondExp-Bold
    /AGaramondExp-BoldItalic
    /AGaramondExp-Italic
    /AGaramondExp-Regular
    /AGaramondExp-Semibold
    /AGaramondExp-SemiboldItalic
    /AGaramond-Italic
    /AGaramond-ItalicOsF
    /AGaramond-Regular
    /AGaramond-RegularSC
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AGaramond-SemiboldItalicOsF
    /AGaramond-SemiboldSC
    /AGaramond-Titling
    /AJensonMM
    /AJensonMM-Alt
    /AJensonMM-Ep
    /AJensonMM-It
    /AJensonMM-ItAlt
    /AJensonMM-ItEp
    /AJensonMM-ItSC
    /AJensonMM-SC
    /AJensonMM-Sw
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /Americana
    /Americana-Bold
    /Americana-ExtraBold
    /Americana-Italic
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /AvantGarde-Demi
    /BBOLD10
    /BBOLD5
    /BBOLD7
    /BermudaLP-Squiggle
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chaparral-Display
    /CMB10
    /CMBSY10
    /CMBSY5
    /CMBSY6
    /CMBSY7
    /CMBSY8
    /CMBSY9
    /CMBX10
    /CMBX12
    /CMBX5
    /CMBX6
    /CMBX7
    /CMBX8
    /CMBX9
    /CMBXSL10
    /CMBXTI10
    /CMCSC10
    /CMCSC8
    /CMCSC9
    /CMDUNH10
    /CMEX10
    /CMEX7
    /CMEX8
    /CMEX9
    /CMFF10
    /CMFI10
    /CMFIB8
    /CMINCH
    /CMITT10
    /CMMI10
    /CMMI12
    /CMMI5
    /CMMI6
    /CMMI7
    /CMMI8
    /CMMI9
    /CMMIB10
    /CMMIB5
    /CMMIB6
    /CMMIB7
    /CMMIB8
    /CMMIB9
    /CMR10
    /CMR12
    /CMR17
    /CMR5
    /CMR6
    /CMR7
    /CMR8
    /CMR9
    /CMSL10
    /CMSL12
    /CMSL8
    /CMSL9
    /CMSLTT10
    /CMSS10
    /CMSS12
    /CMSS17
    /CMSS8
    /CMSS9
    /CMSSBX10
    /CMSSDC10
    /CMSSI10
    /CMSSI12
    /CMSSI17
    /CMSSI8
    /CMSSI9
    /CMSSQ8
    /CMSSQI8
    /CMSY10
    /CMSY5
    /CMSY6
    /CMSY7
    /CMSY8
    /CMSY9
    /CMTCSC10
    /CMTEX10
    /CMTEX8
    /CMTEX9
    /CMTI10
    /CMTI12
    /CMTI7
    /CMTI8
    /CMTI9
    /CMTT10
    /CMTT12
    /CMTT8
    /CMTT9
    /CMU10
    /CMVTT10
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /Cutout
    /EMB10
    /EMBX10
    /EMBX12
    /EMBX5
    /EMBX6
    /EMBX7
    /EMBX8
    /EMBX9
    /EMBXSL10
    /EMBXTI10
    /EMCSC10
    /EMCSC8
    /EMCSC9
    /EMDUNH10
    /EMFF10
    /EMFI10
    /EMFIB8
    /EMITT10
    /EMMI10
    /EMMI12
    /EMMI5
    /EMMI6
    /EMMI7
    /EMMI8
    /EMMI9
    /EMMIB10
    /EMMIB5
    /EMMIB6
    /EMMIB7
    /EMMIB8
    /EMMIB9
    /EMR10
    /EMR12
    /EMR17
    /EMR5
    /EMR6
    /EMR7
    /EMR8
    /EMR9
    /EMSL10
    /EMSL12
    /EMSL8
    /EMSL9
    /EMSLTT10
    /EMSS10
    /EMSS12
    /EMSS17
    /EMSS8
    /EMSS9
    /EMSSBX10
    /EMSSDC10
    /EMSSI10
    /EMSSI12
    /EMSSI17
    /EMSSI8
    /EMSSI9
    /EMSSQ8
    /EMSSQI8
    /EMTCSC10
    /EMTI10
    /EMTI12
    /EMTI7
    /EMTI8
    /EMTI9
    /EMTT10
    /EMTT12
    /EMTT8
    /EMTT9
    /EMU10
    /EMVTT10
    /EstrangeloEdessa
    /EUEX10
    /EUEX7
    /EUEX8
    /EUEX9
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuroMono-Bold
    /EuroMono-BoldItalic
    /EuroMono-Italic
    /EuroMono-Regular
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /Fences
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FreestyleScript
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Giddyup
    /GreymantleMVB
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /ICMEX10
    /ICMMI8
    /ICMSY8
    /ICMTT8
    /ILASY8
    /ILCMSS8
    /ILCMSSB8
    /ILCMSSI8
    /Impact
    /jsMath-cmex10
    /Kartika
    /Khaki-Two
    /LASY10
    /LASY5
    /LASY6
    /LASY7
    /LASY8
    /LASY9
    /LASYB10
    /Latha
    /LCIRCLE10
    /LCIRCLEW10
    /LCMSS8
    /LCMSSB8
    /LCMSSI8
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LINE10
    /LINEW10
    /LOGO10
    /LOGO8
    /LOGO9
    /LOGOBF10
    /LOGOD10
    /LOGOSL10
    /LOGOSL8
    /LOGOSL9
    /LucidaBlackletter
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaBright-Oblique
    /LucidaBrightSmallcaps
    /LucidaBrightSmallcaps-Demi
    /LucidaCalligraphy-Italic
    /LucidaCasual
    /LucidaCasual-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaNewMath-AltDemiItalic
    /LucidaNewMath-AltItalic
    /LucidaNewMath-Arrows
    /LucidaNewMath-Arrows-Demi
    /LucidaNewMath-Demibold
    /LucidaNewMath-DemiItalic
    /LucidaNewMath-Extension
    /LucidaNewMath-Italic
    /LucidaNewMath-Roman
    /LucidaNewMath-Symbol
    /LucidaNewMath-Symbol-Demi
    /LucidaSans
    /LucidaSans-Bold
    /LucidaSans-BoldItalic
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /LucidaTypewriter
    /LucidaTypewriterBold
    /LucidaTypewriterBoldOblique
    /LucidaTypewriterOblique
    /Mangal-Regular
    /MicrosoftSansSerif
    /Mojo
    /MonotypeCorsiva
    /MSAM10
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MTEX
    /MTEXB
    /MTEXH
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MT-Symbol-Italic
    /MTSYN
    /MVBoli
    /Myriad-Tilt
    /Nyx
    /OCRA-Alternate
    /Ouch
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Pompeia-Inline
    /Postino-Italic
    /Raavi
    /Revue
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RSFS10
    /RSFS5
    /RSFS7
    /Shruti
    /Shuriken-Boy
    /SpumoniLP
    /STMARY10
    /STMARY5
    /STMARY7
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /UniversityRoman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /WASY10
    /WASY5
    /WASY7
    /WASYB10
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


