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Abstract—This paper describes the development of a self-
coaching system to improve driving behavior by allowing drivers
to review a record of their own driving activity. By employing
stochastic driver-behavior modeling, the proposed system is able
to detect a wide range of potentially hazardous situations, which
conventional event data recorders are not able to capture, in-
cluding those involving latent risks, of which drivers themselves
are unaware. By utilizing these automatically detected hazardous
situations, our web-based system offers a user-friendly interface
for drivers to navigate and review each hazardous situation in
detail (e.g., driving scenes are categorized into different types
of hazardous situations and are displayed with corresponding
multimodal driving signals). Furthermore, the system provides
feedback on each risky driving behavior and suggests how users
can safely respond to such situations. The proposed system estab-
lishes a cooperative relationship between the driver, the vehicle,
and the driving environment, leading to the development of the
next generation of safety systems and paving the way for an
alternative form of driving education that could further reduce
the number of fatal accidents. The system’s potential benefits
are demonstrated through preliminary extensive evaluation of an
on-road experiment, showing that safe-driving behavior can be
significantly improved when drivers use the proposed system.

Index Terms—Detection of risky driving, diagnosis and feed-
back system, driver coaching, potentially hazardous situation,
self-directed learning.

I. INTRODUCTION

IN RECENT years, in addition to passive safety systems
(e.g., airbags, seat belts, and laminated glass), active safety

systems such as assisted braking systems, adaptive cruise con-
trol, and intelligent speed adaptation, have played an increasing
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role in reducing the number of fatal traffic accidents [1]. In
general, active safety systems can be operated manually by a
driver or automatically by a computer system in response to
sensory data that provide information regarding the vehicle’s
state. Nevertheless, as these active systems become more ad-
vanced and sophisticated, several researchers and developers
have raised questions about their limitations (e.g., application
specific), their functionality (e.g., when the system should
intervene), and their impact on drivers (e.g., overreliance). To
overcome such problems and to further reduce the number of
future accidents, we believe that cooperative safety systems,
which take into account driver behavior, vehicle status, and
driving environment as one whole system are essential for
developing more effective safety systems. Our objective in this
research is to develop effective ways of enhancing cooperative
safety systems by focusing on the relationship between the
driver, the vehicle, and the driving environment.

Event data recorders (EDRs) have been used to capture driv-
ing data, which are generally video and acceleration signals in
real-world driving environments [2]. The primary use of EDR
data is as evidence of what actually occurred during a traffic
accident. These data can be analyzed in a similar manner to the
data from a black box in an airplane. Furthermore, according
to a risk consulting company, the number of traffic accidents
was reduced by more than 30% when vehicles were equipped
with EDRs and safety guidance was provided to drivers using
their own recorded driving behavior [3]. Motivated by this
insight, and extended from our previous work [4], [5], we
present the development of a next-generation EDR, which is
capable of detecting a wide range of potentially hazardous
situations and risky driving behavior that would not be captured
by conventional EDRs. We also show how these data can be
used to subsequently instruct drivers on how they can improve
their driving by adopting safer driving behavior.

The proposed system employs a data-centric approach to
record, analyze, and retrieve large amounts of observations
from real-world driving signals [6]. In addition to explicitly
risky incidents that would be normally captured by conven-
tional EDRs (e.g., sudden deceleration) [7], the proposed sys-
tem is able to capture potentially risky incidents by employing
advanced sensory systems and stochastic driver behavior mod-
els. Driver-behavior models based on Gaussian mixture models
(GMMs) representing safe and risky driving behavior were
exploited to automatically detect risky driving behavior from
the recorded driving data. Finally, a web-based driving diagno-
sis and feedback system was developed. The system allows a
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user to browse through their own detected hazardous situations,
which are categorized by different types of risky behaviors,
along with the corresponding driving signals. Subsequently, the
system explains why the driving behavior detected in that
situation is considered unsafe and makes a suggestion on how
it can be improved.

Experimental evaluations were conducted to verify the use-
fulness of our system in reducing the number of potentially
hazardous situations caused by unsafe driving behavior. A total
of 33 drivers, including six professional drivers, participated in
our study. Experimental results showed a significant reduction
in the number of detected hazardous situations for the normal
drivers who used our system, compared with those who did
not use our system. Preliminary analysis was also performed to
validate the effectiveness of the proposed system on improving
long-term behavior, as well as evaluating the subjective opinion
of drivers toward the system. These results showed that a
driver’s ability to perceive and understand hazardous situations,
which are usually obtained through driving experience, can be
enhanced by coaching them with their own driving data.

This paper is organized as follows. In the next section, we
briefly discuss the limitations of conventional EDRs and tradi-
tional driving improvement methods. In Section III, we discuss
our method of collecting on-the-road driving data. Then, in
Section IV, the algorithm for detecting hazardous situa-
tions is discussed. Section V describes our web-based auto-
matic diagnosis and self-review system, including experimental
evaluation and analysis. Finally, this paper is concluded in
Section VI.

II. BACKGROUND AND MOTIVATION

A. Limitations of Conventional EDRs

In the past decade, to study driving behavior in a realistic
driving environment and perform accident analysis, EDRs have
been installed in automobiles to record vehicle information
and driving scenes related to collisions and near collisions [2].
Conventional EDRs are triggered by sudden changes in velocity
(e.g., extreme acceleration or deceleration rates), which usually
occur as a result of driver responses to hazardous situations, and
then continuously record data for some time thereafter. Some
EDRs may also record a few minutes of buffering data before
they are activated. However, in addition to these explicitly haz-
ardous situations, which are able to be perceived and responded
to by drivers, there are many other latent hazardous situations
that are not recorded by EDRs (e.g., situations where drivers do
not take evasive action or do not alter their driving behavior in
response to hazardous situations, due to carelessness or inatten-
tion). In some cases, collisions or near collisions are avoided
only because other parties react in time to prevent them (e.g.,
when a pedestrian stops before entering the roadway). Fig. 1
shows which hypothetical-hazardous situation detection zones
conventional EDRs are able (and unable) to capture. Detecting
and recording these latent hazardous situations would be useful
for improving overall traffic safety since these recurring risky
situations can cause serious accidents at any time. Table I lists
the different types of hazardous situations that may lead to colli-

Fig. 1. Detection zone of conventional EDRs in relation to all potentially
hazardous situations.

TABLE I
DIFFERENT TYPES OF HAZARDOUS SITUATIONS CAPTURED BY CDR

sions or near collisions (based on the analysis of the data in our
corpus). Conventional EDRs may be able to record situations
1–3 on the list in Table I. Some advanced sensory systems
may be able to record up to the first seven types of hazardous
situations listed, but none are able to capture all of the events.
Some EDRs are designed to continuously record all driving
data, i.e., continuous data recorders (CDRs). However, most of
the recorded data are not useful, and the processing cost is too
high to fully exploit all the data. Therefore, we aim to develop a
next-generation EDR that efficiently and automatically detects
all the hazardous situations listed in Table I.

B. Limitations of Driving Improvement Methodologies

Although there are several current efforts in the field of driver
education that attempt to reduce traffic accidents, particularly
for novice drivers (such as in-class/in-vehicle instruction, in-
teractive, home-based programs, and online courses), their ef-
fectiveness is restricted by the limited amount of actual driving
involved and the absence of feedback that takes into account
the individual driving characteristics of each driver [8]. Drivers
gain more driving experience and skill at perceiving hazardous
situations when they are exposed to a variety of real-world
driving situations. Furthermore, safe driving habits may not be
implanted in novice drivers due to lack of proper instruction
being given, and it is not practical to have a driving instructor
with novice drivers at all times. In addition, driver’s personality
and individual driving characteristics have an indirect effect
on risky driving behavior and on the risk of being involved in
an accident, due to the individual’s unique perception and ap-
praisal of the driving environment [9]. Therefore, an integrated
system that allows drivers to review their own recorded driving
experiences, points out risky driving behavior, and instructs
them on how to improve their behavior will truly help them
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Fig. 2. Instrumented vehicle equipped with various types of sensory systems.

improve their driving skills and nurture safe driving habits. As
a result, this will reduce the overall number of accidents and
their often tragic consequences.

III. LARGE-SCALE ON-ROAD DRIVING DATABASE

To analyze driver behavior and develop our system, we
used a large amount of real-world observations that were syn-
chronously collected using an instrumented vehicle, as shown
in Fig. 2. The vehicle is equipped with a wide range of sensors
and data recording systems. The rich multimodal data contains
12-channel audio, four-channel video (capturing the front-view
scene, as well as the driver’s face and feet), GPS information,
driving behavior signals (including gas and brake pedal pres-
sure, steering angle, following distance, and vehicle velocity),
physiological signals (including the driver’s heart rate, skin
conductance, and emotion-based sweating on the palms and
soles), etc. In particular, the steering angle is obtained using a
potentiometer. The brake and gas pedal pressures are obtained
using pressure sensors. Vehicle velocity is measured using the
output from a pulse generator. Following distance from a lead
vehicle is acquired using two types of distance sensors and
a laser scanner mounted on the front of the vehicle. More
details about the vehicle setup can be found in [10] and [11].
Each driver drove the instrumented vehicle on the same route
around the Nagoya, Japan, area in a variety of environments and
actual traffic conditions. All the drivers performed particular
secondary tasks while driving at the same locations, such as
reading signs and billboards aloud, listening to and repeating
alphanumeric strings, following the instructions of a human
navigator, and interacting with a spoken dialog music retrieval
system. The resulting driving corpus was considered to be one
of the world’s largest on-the-road driving databases at the time
this paper was written, with more than 550 participants taking
part in the project.

IV. DETECTION OF HAZARDOUS SITUATIONS

In this section, we discuss the developmental framework
for detecting potentially hazardous situations and risky driving
behavior from the recorded driving data. Hidden hazardous sit-
uations that may not be captured by conventional EDRs include

signals turning yellow, crossing vehicles at intersections, and
pedestrians making ambiguous movements at crosswalks. For
the purpose of data analysis and for training the driver-behavior
model, a human annotator watched all the video obtained
from the front-view camera and manually identified hazardous
situations. Then, the annotator observed whether the driver an-
ticipated the possibility of the event and took appropriate action,
based on a manual of potential danger analysis in different
driving situations [12], [13]. The manual was developed to
provide guidance regarding a variety of hazardous situations,
based on traffic psychology and Japanese driving rules. It
suggests appropriate driver responses for safely handling each
situation.1 For example, potentially hazardous situations could
exist when a driver is turning left at an intersection with a traffic
light, both before and during the left turn, as described in more
detail in Fig. 3. In this paper, we define a potentially hazardous
situation as one in which a driver fails to take appropriate action
as described in the manual.

A. System Development

Hazardous situations of types 1–7 (Table I) can be straight-
forwardly detected using a rule-based approach or by threshold-
ing the observed driving data (e.g., steering angle, deceleration,
velocity, and following distance), together with vehicle position
within the driving environment (e.g., GPS information), against
an empirical predefined value. In this paper, our methodology
to detect different types of hazardous situations is described as
follows:

1) Sudden Deceleration, Sudden Acceleration, and Risky
Steering: These incidents can be detected by thresholding the
acceleration value, deceleration value, and steering-wheel an-
gle, respectively, in a similar manner as in conventional EDRs.
For instance, a sudden-deceleration incident occurs when lon-
gitudinal acceleration is lower than −0.45 G.

2) Exceeding the Speed Limit: This incident is detected by
comparing the enforced speed limit information of a section
of the route2 with the observed velocity of the vehicle. The
positions of a vehicle in each speed-limit zone is obtained
using GPS information, and then, the corresponding enforced
speed limit is used to compare with the observed vehicle speed.
Note that the current system does not consider noncompliance
with temporary speed limits in place due to unusual weather
conditions, construction zones, etc.

3) Ignoring a Traffic Light: This incident is detected by
manually observing a traffic signal changing to yellow (by
monitoring video from the front-viewed camera) and then
calculating whether the driver entered the intersection in error,
instead of stopping the vehicle (i.e., exceeding the limit of a

1Note that the guidance used in this study was developed specifically
for driving behavior in Japan. As driving behavior in different countries is
characterized by diverse rules and cultures (e.g., driving direction and traffic
control at intersections), a customized guidance is recommended for particular
traffic regulations of each country.

2In this paper, information on each speed-limit zone was obtained in advance.
In the future, such information could be obtained by robust traffic sign detection
and advanced GPS information.
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Fig. 3. Potentially hazardous situations while turning left at an intersection with traffic lights and corresponding appropriate/safe driver responses.

hypothetical “dilemma zone” for situations which are difficult
for drivers to judge [14]).

4) Ignoring a Stop Sign: This incident is detected by using
GPS information to locate the intersections with stop signs and
then measuring vehicle velocity to determine whether the driver
stopped.

5) Insufficient Following Distance: This incident is detected
by thresholding the calculated time to collision (TTC, i.e., the
time required for two vehicles to collide if they continue at their
present speed on the same path [15]). We use a laser scanner to
capture the distance to the lead vehicle. A threshold of 1.7-s
TTC was applied in this study. Instead of measuring relative
speed directly, we use the regression coefficient of the following
distance in an 800-ms window to represent relative speed.

However, to automatically detect potential risk in cases
involving driving through an uncontrolled intersection (i.e.,
one with no traffic lights or signs) or during obstacle
avoidance (situations 8 and 9 from Table I, respectively),
driver-behavior models are required to decide if risky driving
behavior is present. Stochastic modeling frameworks (e.g.,
hidden Markov model, GMM) have shown great promise in
capturing meaningful driving characteristics in several studies
[6], [16], [17]. In the next section, we introduce GMM-based
driver-behavior modeling, which can be employed for both
detection and regression problems.

B. GMM-Based Driver-Behavior Model

In the GMM [18], we assume that K latent (hidden) com-
ponents with different characteristics and corresponding pa-
rameters (θk) underlie the observed data O = {oi}Ni=1. The
observed data are generated from a mixture of these multiple
components. In particular, the total amount of data generated
by component k is defined by its mixing probability πk. The
probability density function of O given by a GMM with param-
eters Θ = {θk}Kk=1 is given as

p(O|Θ) =

N∏
i=1

K∑
k=1

πkp(oi|θk) (1)

where θk = {μk,Σk} is a unimodal Gaussian (Normal) dis-
tribution with a mean vector μk and a covariance matrix Σk,
with a constraint of

∑
πk = 1, πk > 0. The most practical

and powerful method for obtaining estimate of the mixture
parameters is the expectation-maximization algorithm.

1) Mixture Model Regression: The GMM can be exploited
for a regression problem by assuming that an observation con-
sists of both input stimuli X = {xi}Ni=1 (independent variables)
and output responses Y = {yi}Ni=1 (dependent variables), i.e.,
oi = {xi, yi}. Therefore, the GMM’s parameters can be ex-
pressed as

μ =

[
μx

μy

]
Σ =

[
Σx Σxy

Σyx Σy

]
for each k component.

That is, mean vector μ is a concatenation of a mean vector of the
input variables and a mean of the response variables. Similarly,
the covariance matrix Σ is composed of the autocovariance
(Σx and Σy) and cross-covariance (Σxy and Σyx) matrices
of these two variable sets. Subsequently, given a new set of
stimuli xnew, the corresponding responses can be predicted via
the conditional expectation of each component E(Y |xnew, θk),
where

E[Y |xnew, θk] = μy +ΣyxΣ
−1
x (xnew − μx). (2)

Finally, the predicted responses ypred, given xnew and a number
of Gaussian components, can be computed as

ypred =
K∑

k=1

hk(xnew)E[Y |xnew, θk] (3)

where hk(xt) is a posterior probability that xt belongs to the
kth component as

hk(xt) =
πkp(xt|θk)∑K
j=1 πjp(xt|θj)

, 1 ≤ k ≤ K (4)

where p(xt|θk) is the marginal probability of the observed
parameter xt generated by the kth Gaussian component.

2) Pedal Prediction: The GMM-based driver-behavior
modeling was then applied in [17] and [19] to generate the car-
following patterns of drivers. The GMM-based driver-behavior
model represents patterns of pedal operation corresponding
to the observed vehicle velocity and following distance.
The underlying motivation of this modeling framework is
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Fig. 4. ROC curves of risky driving detection performance (left) for obstacle avoidance and (right) for going straight through an intersection with no traffic light,
employing different sets of observations (i.e., O = S or B, O = [B,G, S, V, F ]T , and O = [B,G, S, V, F,G− Ĝ]T ).

that, as a driver determines gas and brake pedal operation
in response to the stimuli of vehicle velocity and following
distance, accordingly, such patterns can be modeled by a joint
distribution of all correlated parameters.

To model the gas-pedal pattern, an observed feature vector
at time t, i.e., xt, consists of vehicle velocity Vt, following
distance Ft, and gas pedal pattern Gt with their first- Δ and
second-order Δ2 time derivatives as

xt = [Vt,ΔVt,Δ
2Vt, Ft,ΔFt,Δ

2Ft, Gt,ΔGt,Δ
2Gt]

T (5)

where the Δ(·) operator of a parameter is defined as

ΔVt = Vt −
∑L

l=1 l · Vt−l∑L
l=1 l

(6)

where L is a window length (e.g., 0.8 s). Here, the driver’s
response parameter Y is the future pedal operation Gt+τ , where
τ is an amount of prediction time (e.g., 0.5 s). Therefore, the
observed feature vector ot can be defined as

ot =
[
xT
t Gt+τ

]T
. (7)

Finally, the predicted pedal operation Ĝt+τ can be calculated
by using (3).

C. Risky Behavior Detection

To detect risky driving behavior, two GMM-based driver-
behavior models were employed to capture patterns of
driver behavior from a set of observations belonging to safe
driving-behavior and risky driving-behavior groups, i.e., Θsafe

and Θrisky, respectively. Again, the observations are obtained
from common driving signals such as gas pedal pressure G,
brake pedal pressure B, steering-wheel angle S, vehicle ve-
locity V , and following distance F . Both models were trained
using the manually tagged data of the development set. Sub-
sequently, they were used to perform a hypothesis test to

determine whether an unseen event with observations O is
classified as safe or risky [20] as

An event is risky if
p(O|Θrisky)

p(O|Θsafe)
≥ γ (8)

where γ is a predefined threshold.
To validate the detection performance of the GMM-based

driver-behavior model, a sixfold cross validation was performed
to detect hazardous situations of types 8 and 9 (i.e., risky
obstacle avoidance and risky driving through an uncontrolled
intersection) using observations from 1786 and 833 events, re-
spectively. Fig. 4 shows receiver operating characteristic (ROC)
curves of (left plot) risky driving detection performance of
the risky obstacle avoidance and (right plot) the risky driving
through an uncontrolled intersection, employing different sets
of observations (i.e., O = [B,G, S, V, F ]T , O = S, or O = B).
As we can see, adding more observed driving signals showed
better detection performance.

To further improve the detection performance, an additional
feature capturing the residual of pedal prediction could be ap-
pended to the observed feature vector. This prediction residual
represents the degree of a driver behavior actually observed
that deviates from the predicted value of a driver model. To
calculate the prediction residual, we first built a global driver-
behavior model for gas-pedal prediction, as mentioned in the
previous section, using observations from a pool of several
drivers. The obtained global driver-behavior model represents
average or general driving characteristics commonly shared by
all training observations. This global driver model was then
used to predict pedal operation Ĝt+τ of a driver. Subsequently,
the deviation of the actually observed value from the predicted
value (i.e., Gt+τ − Ĝt+τ ) can be obtained at each time sample
of a driving event. Then, we appended this value to a feature
vector O (i.e., [B,G, S, V, F,G− Ĝ]T ) to obtain a new feature
vector for training Θsafe and Θrisky and for a hypothesis test
in (8). As shown in Fig. 4, adding the prediction residual of
pedal signals consistently improved prediction performance. In
general, about 70% of risky driver response could be detected
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Fig. 5. Comparison of traffic-context risk during left turn at different
intersections.

with a 20% false positive rate. We then exploited this new
feature for detecting risky driving behavior in our study.

D. Analysis of Potential Risks

To quantify the hazardous situations previously discussed
and analyze the driving data, we define the levels of potential
risk of a driver’s response to a traffic situation and the risk of
the traffic situation itself with the following two parameters:

Potential risk of a traffic context (α) =
Obs

All
(9)

Potential risk of a driver (β) = 1 − Rsp

Obs
(10)

where Obs is the number of observed hazardous situations in a
particular traffic context (e.g., turning left at the intersection of
A and B streets), All is the number of all possible hazardous sit-
uations, and Rsp is the number of appropriate responses made
by drivers to the hazardous situations. That is, α represents the
risk level of a traffic context, and β represents the risk level of
a driver’s response.

We analyzed the driving data of 86 drivers, including three
expert drivers (i.e., driving instructors). All of the drivers drove
the instrumented vehicle along the course for the first time with
a secondary task (e.g., talking on a hands-free cell phone, per-
forming command input through a speech interface, etc.), but
they drove the course the second time without any secondary
tasks. Fig. 5 compares the levels of scene danger when turning
left at eight different intersections. Among intersections with
traffic lights, the level of scene danger at the fifth intersection is
the highest due to its high traffic volume and the large number
of pedestrians. Similarly, Fig. 6 compares (left) the absence
of appropriate driver reaction between nonexpert and expert
drivers and (right) the lack of appropriate driver reaction while
driving with and without secondary tasks. We can see that non-
expert drivers showed higher level of potential risk, compared
with expert drivers, and that driving without secondary tasks
resulted in a lower level of potential risk than driving with
secondary tasks.

V. DRIVING DIAGNOSIS AND FEEDBACK SYSTEM

In this section, we describe our proposed system, which
allows drivers to review their own driving data as recorded by a
CDR, using an automatic method to detect hazardous behavior
based on the aforementioned algorithms [4].

Fig. 6. Comparison of driver risk levels. (Left) Nonexpert versus expert.
(Right) With task versus without task.

A. System Description

Our automated diagnosis and self-review system was devel-
oped on a server computer as a web application using computer-
generated imagery for easy access via networks from personal
computers or smartphones. Our system automatically detects
nine types of potentially hazardous situations (Table I) from
the driver’s own recorded driving data. The current version
will display up to five of the most hazardous scenes of each
hazard type by automatically gauging the hazard level using
the magnitude of the difference from the predefined thresholds
(for hazard types 1–7) or from the magnitude of the likelihood
ratio between the risky and safe driving models (for hazard
types 8 and 9). The system allows users to browse through each
detected hazardous situation, represented by a balloon icon on
an actual driving map (i.e., Google Maps API). Each balloon
represents one hazardous situation, with different colors cor-
responding to different hazard types. The bigger the size of a
balloon, the higher the hazard level, as shown in Fig. 7(a). The
system also provides statistics on all the hazardous situations
the driver was involved with, from all the recorded data, using
a pie chart showing the number of occurrences of each type
of hazardous behavior. Therefore, the system can identify a
tendency toward risky driving behavior or other personality
traits possessed by an individual driver, as shown in Fig. 7(b).

After clicking on the balloons on the driving map, the cor-
responding video clip and driving signals are displayed, along
with instructions on how the user can improve their driving
behavior. The user can also examine various kinds of driving
signals related to that particular driving scene. The safety
instructions were prepared in advance for each type of detected
hazardous situation, based on the aforementioned manual.
Table II shows samples of instructions given in different types
of hazardous situations. In general, the system will inform the
user of why a particular driving behavior is considered unsafe in
that situation and then advise the user on how they can improve
their driving behavior. Fig. 8 shows an example of the interface
diagnosing a hazardous situation at an intersection. The system
notifies the user that the user did not stop at the stop sign
and crossed the intersection at a speed of 17 km/h. Then, the
system suggests that the driver should completely stop at the
stop sign and confirm that it is safe to cross the intersection
before proceeding.

B. Experimental Evaluation

To validate the effectiveness of our developed system in
reducing the number of detected hazardous situations, we re-
cruited 33 drivers, including six expert drivers, to participate
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Fig. 7. Interface summarizes hazardous situations on a driving map, along with driving tendencies of user.

TABLE II
SAMPLES OF INSTRUCTIONS GIVEN FOR DIFFERENT TYPES OF HAZARDOUS SITUATIONS

in our experiment. The subjects were asked to drive the instru-
mented vehicle three times on three different days, following
the same route, which takes approximately 1.5 h to complete.
We used data from the second and third sessions for our
analysis, as we allowed the subjects to get familiar with the
instrumented vehicle during the first session. The subjects were
scheduled to have their second session a few months after their
first session. A few weeks after participating in the second
session, some of the subjects used the driving coaching system
and received safety feedback for 10 min before taking part in
the third session. The subjects only received a brief tutorial
on how to use the system and then browsed their own data
after being instructed to review all of the detected hazardous
driving situations in any order. They were told that, if time
remained, they could also view their normal driving data or any

other information. The system recorded logs of their browsing
behavior using software to capture screen images.

We compared the number of detected hazardous situations
from the second and third sessions. Fig. 9 compares (top) the
number of detected hazardous scenes for drivers who received
coaching using our system and those who did not and (bottom)
the number of hazardous scenes detected for normal and pro-
fessional drivers. The top of the figure shows the number of
hazardous situations detected for six drivers who did not use
the coaching system. (These data were collected from another
six drivers, in addition to those among the 33 drivers who
did use the coaching system.) The bottom of the figure com-
pares the number of detected hazardous incidents among the
27 nonexpert drivers and the six expert drivers, all of whom
used the system, both before and after coaching. We observed
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Fig. 8. Example of interface diagnosing hazardous situation at an intersection.

Fig. 9. Number of detected hazardous scenes for subjects who did not receive
feedback and nonexpert/expert drivers before and after receiving feedback.

no improvement among the drivers who did not use the system.
On the other hand, the number of detected hazardous scenes
decreased by approximately 50% for the nonexpert drivers who
reviewed their risky driving behavior before participating in
the third session. Among the 33 drivers who used the sys-
tem, the number of detected hazardous situations decreased
for 27 drivers. We also observe that the number of detected
hazardous scenes of expert drivers was much smaller than that
of nonexpert drivers for the second drive; however, there was no
significant improvement on the third drive for the expert drivers.

Fig. 10 compares the average number of detected hazardous
situations before and after using the system for all drivers,
categorized into different types of hazardous situations. The
number of detected hazardous scenes for expert drivers was
about half the number detected for nonexpert drivers. In ad-
dition, the number of detected hazardous scenes for most of
the nonexpert drivers decreased by approximately 50% for all
types of hazardous situations after using the system, whereas
less impact was observed with the expert drivers.

A preliminary study was performed to further examine the
impact of the system on long-term driving behavior, and three
drivers were asked to participate in the experiment a fourth
time, several months after participating in the third session.
For the fourth session, the drivers were not allowed to use the
coaching system before driving. Fig. 11 compares the number

Fig. 10. Comparison of the average number of hazardous situations for all
drivers before and after using the system under different types of hazardous
situations.

Fig. 11. Comparison of the number of detected hazardous situations during
the second, third, and fourth sessions for three drivers.

of detected hazardous situations for the second, third, and
fourth sessions of these three drivers. We can see the number
of detected hazardous scenes during the fourth session was
higher than that during the third session but still lower than
the number detected during the second session. This showed
that drivers had forgotten some of what they had learned by the
time of the fourth session but that their driving behavior was
still better than before using the coaching system. This suggests
that repetitive training is necessary to maintain long-term driver
safety awareness.
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Fig. 12. Drivers’ subjective agreement on detected hazardous situations ver-
sus driving performance after/before using system (one marker/driver).

In addition, we surveyed the drivers to discover their subjec-
tive opinion of the hazardous situations detected by the system
using a questionnaire. The drivers’ opinion can be categorized
into the following groups:

1) drivers who realized that the situations were risky them-
selves during driving, and who agreed with the system
after watching the scenes;

2) drivers who did not realize that the situations were risky
but who agreed with the system after watching the scenes;

3) drivers who did not agree that the situations were risky;
4) drivers who realized that the situations were risky but who

felt the system failed to detect other hazardous behavior;
5) others.

Fig. 12 plots drivers’ opinions (groups 1–5) and their driving
performance in terms of the ratio of the number of detected
hazardous situations after and before using the system. (A ratio
value of less than 1.0 represents a decrease in the number
of detected hazardous situations after using the system.) We
can see that about 50% of drivers agreed that the hazardous
situations detected by the system seemed to be hazardous to
them. Subsequently, the majority of drivers who improved were
those who adopted the senses of hazardous situations.

Finally, to analyze possible correlations between individual
driver characteristics which can be measured with a written
test, and the actual driver behavior, we asked the subjects to
complete several questionnaires before and after participating
in the experiment. We used questionnaires, which we created
for this experiment, as well as standard tests used to measure
driver safety aptitude [21] and driver safety awareness [22]
and two checklists used to predict driving style and sensitivity
to stress while driving [23]. Fig. 13 shows the relationship
between the results of a written driver test and the actual driving
behavior. We can see a correlation between driver risk levels
as predicted using a written questionnaire designed by traffic
psychologists and the actual driving behavior. The figure shows
that drivers who were judged to be more dangerous by results of
a written test actually showed more dangerous behavior during
the study. We also observed that the safer drivers exhibited more
improvement in their driving behavior after using the system
than drivers with riskier driving behavior.

Fig. 13. Relationship between the results of a written driving test and actual
driver behavior.

VI. CONCLUSION AND FUTURE WORK

We have developed an algorithm for the automatic detection
of potentially hazardous driving situations, including latent
hazardous situations, which conventional EDRs cannot capture.
The algorithm employed GMM-based driver-behavior model-
ing to identify whether a situation is considered safe or risky.
As a result, we were able to detect various kinds of risky driving
behavior. We then developed a web-based driver coaching
system that allows users to review their own recorded driving
scenes, as well as corresponding driving signals such as speed,
brake, and gas pedal pressures. The proposed system is capable
of automatically detecting hazardous situations and instructing
users how to appropriately respond to such situations in a safe
manner. The experimental results have shown that the amount
of risky driving behavior detected was reduced by half after
drivers used our proposed system. In future work, we aim to
analyze a greater number of drivers on repetitive training using
our system and its impact on their long-term driving behavior,
as well as to quantify the advantage of having drivers review
their own and other drivers’ driving scenes. Furthermore, we
hope to detect more types of unsafe driving behavior by mon-
itoring the driver’s gaze and foot position in relation to pedal
operation. We are also developing a smaller EDR, which can be
installed in a wide variety of vehicles. This data recorder will
also allow communications between controller-area-network
bus information and smartphones.
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