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Abstract— Advanced driver assistance systems should not
only make the driving experience safer and more comfortable,
it should also have a positive effect on driving behaviors. In this
paper, an instructor-like assistance system for collision avoidance
is developed and realized on an actual vehicle. The proposed
system is activated only if the driver is not operating the vehicle
properly when facing a collision risk. The vehicle control is
shared by the driver and the assistance system. It is controlled
by servomotors. In order to fulfill this requirement, a constraint
satisfaction problem (CSP) is proposed and solved based on
safe driving constraints and predictive vehicle states. Vehicle
motion is predicted by a combination of a dynamics model and
a potential field model that reflects the driver’s risk feeling to
an obstacle. Improved driving behavior is verified and evaluated
quantitatively based on driving simulator data. By comparing
the driving data before and after using the assistance system,
it is found that distance is increased and speed is reduced when
passing an obstacle. As a result, driving behavior becomes safer
for collision avoidance due to the system’s instruction. Further-
more, an experiment with an actual vehicle also demonstrates
the practicability of the control system and shows the influence
of different safe driving constraints.

Index Terms— Advanced driver assistance systems, intelligent
vehicles, collision avoidance.

I. INTRODUCTION

UE to the remarkable development of sensor technolo-

gies and artificial intelligence, it is likely that high
level autonomous driving will be available in the near future.
However, there is still a long way to go before a completely
trustworthy autonomous driving system is designed. More-
over, advanced driver assistance systems (ADAS) have not
been widely implemented thus far. Therefore, human-centered
ADASSs, where human drivers are responsible, are still worth
designing and developing.
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For drivers with good driving skills, inattention may be
caused by fatigue or using a cell phone. On the other hand,
for drivers with poor skills, such as new drivers and elderly
drivers, driving risks may be due to misjudgments and delayed
response time. To address these issues, ADASs, such as
collision warning/avoidance systems, play important roles in
alerting drivers or taking action when there is no response
from drivers [1]. Some studies have reviewed and classified
ADASs according to their functions and have concluded
that such systems have a positive impact on road safety
and traffic efficiency [2]. In addition to providing real-time
support in dangerous situations, ADASs can improve driving
behavior. Driving behavior could become safer and more
efficient under the influence of an ADAS, particularly for
elderly and inexperienced drivers [3]. Heijer ef al. also found
that implementation of an ADAS will improve driving skills,
and, more importantly, the improvement will maintain even if
the system fails [4].

Various brake assistance systems have been developed for
rear-end collision mitigation. The Volvo Car Corporation
has developed an automatic emergency braking system with
pedestrian detection. The system can quickly provide full
braking power to avoid accidents in urban environments [5].
In addition, adaptive cruise control and forward collision
warning/avoidance have been integrated in a longitudinal
driving assistance system [6]. Active front steering is also
extensively exploited in collision avoidance systems. Model
predictive control (MPC) has been proposed for active steering
control, and collision avoidance maneuvers were tested on icy
roads [7]. An evasive trajectory method, wherein feedback
approaches are utilized for lateral control, has been designed
for obstacle avoidance [8]. These ideas of active front steering
basically make the vehicle track a collision-free path.

In some driver assistance systems for lane departure avoid-
ance, the system will take over if driver inattentiveness as
well as the risk of lane departure are found. For such systems,
methods to switch between the driver and the system have
been studied [9]-[11]. Different collision avoidance methods
have been proposed for unmanned aerial vehicles (UAV) or
mobile robots. Jenie er al.. combined the velocity obstacle
method with a sense and avoid system for UAV collision
avoidance. In that study, the probability of a collision map
is analyzed [12]. Additionally, Jin er al. presented a good
idea to solve the obstacle avoidance problem of mobile robots
that included a mechanism to switch the system between
autonomous control and teleoperation mode [13]. However,
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for passenger vehicles, sometimes allowing a system that is
not sufficiently reliable to take control may not be accept-
able, particularly when the shifting timing to the system is
counter to driver intentions. Shared control, where an assis-
tance system and a driver control the vehicle concurrently,
have been proposed to improve acceptance of ADASs [14].
A cooperative strategy between a human driver and the system
that uses the weighting function of a Gaussian distribution
has been designed [15]. Rather than simply mixing driver
and controller commands, a method that incorporates the
driver commands directly into the MPC formulation has been
proposed [16].

Acceptance of ADASSs is increasing; however, as outlined
in a previous study [17], the assistance is often poorly under-
stood by users. In other words, drivers may feel strange
or uncomfortable even if the system’s action is acceptable.
Typically, human drivers do not always follow a certain
path. Instead, drivers select a safe driving area. Consequently,
researchers have paid more attention to constraint-based meth-
ods or envelope-based methods. A potential elastic band model
was presented to calculate an appropriate driving corridor
for avoiding obstacles [18]. Anderson et al. designed safe
homotopies where the driver can operate freely without any
intervention and utilized MPC to ensure the vehicle did not
violate safety constraints [19]. Similarly, Erlien ez al. proposed
applying the MPC framework for obstacle avoidance and
stability control using safe driving envelopes. One envelopes
is defined by the vehicle handling limits, and the other is based
on the environmental constraints [20], [21]. These approaches
imply that, when the driver shares the same driving envelope
with the assistance system, cooperation will function harmo-
niously. Nevertheless, the assistance may still be undesirable
if the driver and the assistance system cannot share the same
envelope. The inability to share the same envelope is caused
by incongruence between the driving characteristic expressed
by a cost function in the control system and the original one
of the driver. To cope with this problem, driver models that
employ personal driving data are presented to predict drivers’
behaviors and make the assistance control follow their habits
and characteristics [22]-[24].

The control scheme presented in this paper combines the
advantages of shared control and constraint-based methods.
Steering and braking control is shared by the driver and the
assistance system; however, the assistance system will not
override human control. Moreover, the assistance control will
only be activated if the predictive vehicle states violate the
safety constraints. In addition, the proposed assistance system
can also function as a driving instructor to improve driving
behavior. The constraints are expressed by a safe driving
region and a limitation on vehicle speed, and the vehicle
motion prediction is computed using a driver-vehicle model.
Based on the constraints and the predictive model, a constraint
satisfaction problem (CSP) is solved to obtain the safe range
of steer angles and longitudinal acceleration. Two types of
experiments are designed and conducted based on a driving
simulator and a real vehicle. Servomotors are used for assistant
control operations, and multimodal visual warning is also
designed. The driving simulator experiment verifies that the
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Fig. 1. Framework of the instructor-like assistance control system.

driver’s inherent characteristics are improved by comparing
the driving data before and after experiencing the proposed
assistance system. The real vehicle experiment was conducted
primarily to verify the practicability of the system on an actual
vehicle and to show the influence of different safe driving
constraints.

In summary, the primary contributions of this paper are as
follows. (1) A new predictive model of vehicle motion is built.
(2) A more efficient search algorithm for CSP is proposed.
(3) Experimental results demonstrate that safety in real-time
driving and improved driving behavior has been achieved
simultaneously.

The remainder of this paper is organized as follows. The
architecture of the instructor-like assistance system is pre-
sented in Section II. The expressions for the safety constraints
and the driver-vehicle model are given in Section III. The CSP
and the control law are presented in Section IV. In Section V,
driving behavior improvement is verified. The real vehicle test
and results are discussed in Section VI. The conclusions and
suggestions for future work are presented in Section VII.

II. OVERVIEW OF ASSISTANCE SYSTEM

The overall architecture of the proposed system primarily
comprises driving constraints, the predictive model, the CSP,
and an assistance control module. As mentioned previously,
the objective of the assistance system is to correct the driver’s
inappropriate driving behavior so as not to violate the safety
constraints over the prediction horizon. The control flow is
presented in Fig. 1.

The predictive model combines a vehicle model and a
driver model that adopts the potential field method to cap-
ture driver characteristics relative to obstacle avoidance. The
driving constraints consider two aspects of driving safety,
i.e., lateral safety and longitudinal safety. For example, for
driving on a straight road, lateral safety can be expressed by
the maximum and minimum lateral positions that form a safe
region. Longitudinal safety can be defined as the speed limit at
which the vehicle should decelerate when passing an obstacle
or going through an intersection.

However, only judging by the safe driving region and speed
limit is not sufficient for implementation of the control system.
The constraints should be converted to the range of the system
input; thus, the CSP is proposed. By solving the CSP with
the safety constraints and the predictive model, the safe range
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of steering angles and longitudinal acceleration are obtained.
Therefore, the assistance system is able to judge whether the
current driving behavior will be safe in the future. If safe,
the vehicle is completely controlled by the human driver;
if dangerous, assistant steering or braking is added to the
operation together with the human driver’s operation, which
is a type of shared control. In addition, the human—machine
interface (HMI) for visual assistance is designed to warn the
driver before the system has to intervene.

III. SAFETY CONSTRAINTS AND
VEHICLE-DRIVER MODEL

A. Safe Driving Region and Speed Limit

Unlike the driving envelope, which only considers environ-
mental and vehicular factors [18]-[21], the safety constraints
proposed in this paper also consider driver behaviors. Herein,
the idea is to identify the constraint model using the driving
data following previously proposed methods, e.g., the method
proposed by Okuda et al. [22]. Note that constraint model
identification is a difficult and complex topic and is beyond the
scope of this paper. Herein, we assume the constraint model
can be formulated as follows:

So(x) =k — kzexp(—=(x — (xob — 5))/k2) (D

where ki, k2, and k3 are parameters, xop, is the longitudinal
position of the obstacle, s is the offset, and (x, y) is vehicle
position. Three types of constraints are applied in the system,
Sub(x), Sip(x), and Vyp(x), which represent the upper bound
of y, the lower bound of y, and the speed bound, respectively.
We assume that Syp(x), Sip(x), and Vyp(x) can be expressed
by fp(x) with different parameters. These constraints indicate
that, when approaching the obstacle, the ego car should
steer away to avoid the collision and decelerate to mitigate
risk. An example is given in Fig. 2, where the constraints,
the allowed vehicle states, and the road environment are
illustrated. The calculation of allowed vehicle states will be
introduced in the following section. Ideally, the lateral position
of the ego car should stay between Syp(x) and Sp,(x), which
is called the safe driving region, and vehicle speed should be
less than Vyp(x).

Since we focus on the control strategy and its verification
and evaluation in this paper, techniques for perception and
identification of the obstacle are not discussed. Sensors, such
as radar, lidar, and cameras, can be used to detect the obstacle.
Currently, we simply assume that the obstacle is detected
in advance. Then, the corresponding safety constraints are
generated, as shown in Fig. 2.

Note that the assumed mathematical form of the constraints
does not invalidate the assistance control but may affect
comprehensibility for different drivers. The merits of using
this function can be summarized in two points. One merit is
to obtain the smooth bounds because the raw driving data may
not be smooth. Smooth bounds will result in smooth control.
The other is to make the bounds adjustable by changing the
parameters for different driving scenarios. For example, if the
width of road or the location of the obstacle changes, we can
simply change the parameters in the function.

B. Simplified Dynamics Model

In this paper, the following reasonable assumptions are
made: (1) the vehicle is a rigid body, (2) roll, pitch, and vertical
motion are ignored, (3) the steering is bilateral symmetry,
and (4) tire slip ratio and sideslip angle are very small.
Therefore, the vehicle dynamics can be described based on
the bicycle model as follows.

mof+2(ki+k)f + (mo + 2(Isks — Iky) /v)g = 2ked (2)
Lo + 2(lgkg — Like) B + 2(2ke + k) g o = 2lked  (3)

Here, f is the slip angle, ¢ is the yaw angle, o is the
yaw rate, 0 is the front steering angle, v is the longitudinal
speed, m, I, v, lt, I, k¢, and k, are the mass of vehicle,
the yaw moment of vehicle inertia, the longitudinal speed
of the vehicle, the distance from the center of gravity (CG)
to the front axle, the distance from the CG to the rear axle,
the cornering stiffness of the front wheels, and the cornering
stiffness of the rear wheels, respectively.

Assuming that the vehicle is in the steady-state circular and
the slip angle is zero, the yaw rate can be simplified as follows.

w=0v/(lf+1)o “)

Then, the vehicle speed predicted by the dynamics model
is given as follows:

v cos(p + w) Va.x

d:|:vsin(go+w)i|:|:Vd,y:| &)
As a model predictive method, the accuracy of vehicle
motion estimation should be guaranteed over the entire predic-
tion horizon. Nevertheless, the vehicle dynamics model only
has high accuracy in the short term because drivers’ maneuvers
may vary over time. As a result, the driver model, which is
suitable for long term prediction by considering changes in

driver maneuvers, is also considered.

C. Potential Field Model

In the driver model, driving behavior in collision avoidance
is modeled by several potential field functions that repre-
sent both the road environment and the risk feeling of the
driver. The potential functions are given for going forward
Uy, side walls Uy, and the obstacle Ugp:

Ug(x,y) = —wgx ©)
Uw(x,y) = ww(exp(—(y — yw)>/02)
+exp(—(y — ywr)?/02)) (7
Usb(x, ¥) = wap exp(—(x — Xob)* /0y
—(y = yob)* /o) (®)

Here, x and y represent the position of vehicle, xq, and yob
represent the position of the obstacle, yy and yy,; represent the
position of a wall, wy, wy, and weyp are the weight parameters,
and oy, ox, and oy are the standard deviations.

In the conventional potential method, these potential func-
tions are only based on the geometric information of environ-
mental elements. However, to increase the congruity between
the driver and the system, the potential functions should
be designed to reflect the risk feeling of the driver during
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Algorithm 1: CSP A
Given:

1. N € N, number of prediction steps,

2. N = {0, 1,..., N}, set of prediction steps,

3. Sub(x) € R and Spp(x) € R, lateral upper and lower
bounds of the safety region at x,

4. X(t +iAt10()) € R, Y(r +iAt|0(t)) € R, i-step-
ahead predictive longitudinal and lateral position
when the current steering angle is 0(¢) at time ¢,

Find: 0 = [Oin (1), Omax ()]
which satisfies

S (X (t +i At10(1)))

< Yt +iAt6(1))(YO(r) €80,Vi e N) (12)
Y (141 At0(1))
< Sun(X(14i Atl0(1)))(VO(t) € 0,Vi € N)  (13)

obstacle avoidance. Since the potential field model described
by Equations (6-8) is a repulsive field, the repulsive force
generated by the potential field can reflect the risk feeling of
different drivers. For example, as the driver perceives more
risk, the vehicle will be driven at a greater distance from the
obstacle or wall. Therefore, we identify function parameters by
observing the driving data to personalize the potential fields.
The details of the parameter identification can be found in our
previous paper [28]. Then, the vehicle speed, V}, x and V, y,
in the x and y directions, respectively, based on the driver
model can be calculated by taking the negative gradient of the
potential functions.

Vp ==V (Ugl(x,y) + Uy(x, y) + Uop(x, y)) = [KE;} ®

Finally, these two models can be combined as a vehicle-
driver model to predict the future position of vehicle (X, Y)
as follows:

Xt+an] _[X@)
[?(wm)} - [?o)}ﬂ’

AA=a) V(X (@), Y (1)) +aVa(@6()]  (10)
where 7 is current time, At is the time step, and a is a weight-

ing coefficient that adjusts the weighting of the calculation of
(5) and (9).

a=¢c (11)

Here, c is a constant between O and 1, and i is the prediction
step. In the prediction horizon, o decreases monotonically so
that the dynamics model is dominant in the short term while
the driver model is increasingly more important in the long
term.

IV. CONSTRAINT-BASED CONTROL ALGORITHM
A. CSP Solution

The CSP determines whether the predictive vehicle behavior
satisfies the safety constraint. Its solution is given to the
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Fig. 2. Example of the relationship between driving constraints and vehicle
predictive states; (a) safe driving region and (b) speed bound.

system as an admissible set of the driving maneuvers that
ensure driving safety in the future. The driving maneuver
is represented by a pair of steer angles 6 and longitudinal
acceleration ax, and there is an affine relationship between
6 and J. Consequently, solving the CSP involves computing
the admissible safety set Osafe () = [Omin (1), Omax (), dxmax (1)]
according to the constraints of the driving region and vehicle
speed described in Section III A. Due to the model predictive
method, it is expected that the assistance control is executed
before the ego car gets too close to the obstacle.

Figure 2 shows an example of the calculation of G, (r) and
Omax (¢) in an avoidance task involving a parked car, where the
safety region is represented as the limits of safety position
Sub(x) and Sip(x) at position x. In this example, CSP A is
formulated as a search problem of the admissible safety set of
driving maneuver Omin (1), Omax (1) € O = {Omin, Omin + A,

< oy Omax — AO, Omax }, where Onin, Omax, and Af are the lower
bounds, upper bounds, and resolution of the steering angle,
respectively. Note that Opnin and Oyax are physical bounds of
the steering angle (constant parameters), and are different from
the admissible safety set at each time instant.

However, it can be observed that CSP A incurs significant
computational costs due to the large search space defined
by Nx®. For example, if |®| = 1000 and | N | = 20,
the algorithm has to compute the predictive position of the
vehicle and check the inequalities (12) and (13) 20000 times.
To reduce the computational cost, the following assumption is
introduced.

0:(1), Y(t+i-Ar6i())
Yt +i- Ar16:@)) (Vi € N)

If 0, (r) <
=<

(14)

This assumption implies that the magnitude relation of Y(+
iAt|0(t)) for different @(r) is invariant over the prediction
horizon. Therefore, solving the safety constraints Gy (f) and
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Omax (¢) is equivalent to finding the vehicle’s lateral position
that contacts the driving bounds Syp(x) and Sp(x), as shown
in Fig. 2. The assumption (14) is satisfied when the parameter
cin (11) is close to 1 so that the vehicle dynamics model can
be more dominant in the prediction [24].

Algorithm 2: CSP B

Given:

The same as CSP A;

Find: emin(t)’ Hmax(t)

which satisfies

Sin(X (t+i At|Omin(t))) < ¥ (t+i At|Omin()) (Vi € N)  (15)
Y (t 41 At|0max (1) < Sup(X (1 + i AtlOmax (1)) (Vi € N)

(16)

Pseudo-code
for searching Opax
1. Set Oy = Omax, O = Omin, Omax = (Gu + O)/2;
2. If the inequality (16) holds, then set 8 = O, else set
Ou = Omax;
3. Set Omax = (Ou + 61)/2;
4. If (6, — 6)) < A0, then terminate the algorithm, else go
to step 2.
Pseudo-code
for searching Omin
1. Set OBy = Omax, & = Omin, Omin = (Hu +91)/2»
2. If the inequality (15) holds, then set 6, = Onin, else set
01 = Omin;
3. Set Gmin = By + 6)/2;
4. If (6, — 6)) < A@, then terminate the algorithm, else go
to step 2.

Based on the assumption (14), CSP A can be reformulated
as the CSP B. Any 0(t) € [Omin(?), Omax (t)], where Onin (¢) and
Omax (¢) are the solutions of CSP B, will satisfy the inequalities
(15) and (16). Therefore, the admissible safety set of steer
angles is derived if only CSP B is solved.

Although the discussion above is related to steering angles,
the CSP for vehicle speed is formulated in the same way. The
constraint of ax is obtained by solving CSP C according to
the speed bound Vyp(x), as shown in Fig. 2.

CSPs B and C can be solved using the binary search
method. Note that pseudocode for CSPs B and C is given
above. Thanks to the binary search method, the required
computational cost is reduced to O(2|N|logz|®|). For exam-
ple, if |®] = 1000 and | N | = 20, the number of
iterations is only 400, which is much smaller than the num-
ber of iterations required by the first algorithm (CSP A).
As a result, the constraints for safe driving are available in
real-time.

B. Control Law

After solving the CSP, the system will supervise the driving
maneuver so that, if [6(¢), ax(t)] exceeds the safety set
Osate(t) = [Omin (), Omax (1), axmax(t)], assistance control will
be activated such that the vehicle states return to safe regions.

Algorithm 3: CSP C
Given:
1. N € N, number of prediction steps,
2. N = {0, 1,..., N}, set of prediction steps,
3. Vup(x) € R, upper bounds of vehicle speed at x,
4. V(r + iAtlax(t)) € R, i-step-ahead predictive vehicle
speed
when the current acceleration is ax(f) at time ¢;
Find: axmax (1)
which satisfies

V (t+i Atlaxmax (1)) < Van (X (t+i A1]0(1))) (Vi €N)

a7)

Pseudo-code
for searching axmax
1. Set ay = Amax, a1 = Amin, Gxmax = (Amax+ Amin)/2;
2. If the inequality (17) holds, then set aj = axmax, else set
Ay = Oxmax;
3. Set axmax = (au+ a1)/2;
4. If (ay — a1) < Aay, then terminate the algorithm, else go
to step 2.

The control law for steering and brake assistance is designed
as follows.

Dsé + K§(9 - Hmax) if 9 > emax

7=10 else if Opax > 0 > Omin~ (18)
DO + Ks(0 — Omin) else if 0 < Opin
Py = Kb(ax - axmax) if ax 2. dxmax (19)
0 otherwise

where 7 is the additional steering torque, py, is the percentage
of brake pedal travel, Dy and K are the steering assistant
control parameters, and Kp is the brake assistance control
parameter. For safety reasons, the maximum values of 7 and
po are set to 0.4 Nm and 30%, respectively. Note that the
control law is designed for driver assistance rather than for
an autonomous driving system that controls the vehicle such
that it follows a planned path [26]-[29]. In other words,
in this control framework, the human driver is responsible for
controlling the vehicle not the proposed assistance system.

V. VERIFICATION OF DRIVING BEHAVIOR IMPROVEMENT

As mentioned previously, the system is developed for both
collision avoidance and driving guidance, which should have
a positive effect on driving behavior. Thus, an experiment
based on a driving simulator was designed and conducted to
verify the improvement of collision avoiding behavior. The
configuration of the driving simulator is presented in Fig. 3(a).
It is based on a PC and display monitors; however, the driver’s
seat, steering wheel, and pedals are actual parts from a Toyota
Prius. The controlled vehicle in the visual environment is
simulated by CarSim. Additionally, the driver can get feedback
from the LED lights on the steering wheel, the motor in the
steering shaft, and the vibration device attached to the pedal.

The margin and vehicle speed when passing by the parked
vehicle are used to characterize the collision avoiding behavior,
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Fig. 3. Experimental plan with the driving simulator; (a) configuration of
driving simulator, (b) collected data, (c) test procedure.

TABLE I
AVERAGE RESULTS OF THE TEST ON THE DRIVING SIMULATOR

Procedure M(argg)in Paszli(nng]/}sl;))eed Acgfgﬁ:;lce
free driving 1 0.712 42.81 /
weak assistance 0.758 28.46 3.69
free driving 2 0.735 38.42 /
strong assistance 0.812 2091 3.44
free driving 3 0.781 33.26 /

as shown in Fig. 3(b). In general, a Japanese driving instructor
will teach novice drivers to be cautious of door opening of
a parked vehicle and be aware of the blind area behind the
vehicle. In this case it is safer if the margin is larger and the
speed is lower when passing the obstacle because someone
may come out of the shadow of the obstacle. The larger margin
and lower speed will effectively reduce the risk or mitigate the
collision.

Twenty-six men and women who had Japanese driving
licenses participated in the experiment. The participants were
asked to avoid a parked vehicle in an urban residential envi-
ronment. The experiment proceeded in five steps, as shown
in Fig. 3(c). Here, “free driving” means driving without
assistance control and “weak/strong assistance” means driving
with assistance of a larger or smaller safety region. The goals
of these steps are explained as follows. (1) Free driving 1 is
simply the initial driving. Here, the data are used to represent
the original driving behavior. (2) Driving with weak/strong
assistance shows system performance. (3) Free driving 2 and
3 evaluate the improvement of driving behavior due to the
guidance of the proposed system. For each step, the partici-
pants were asked to drive three times after two trials, and the
average margin and passing speed were collected for analysis.
In addition, a questionnaire in which the participants graded
the performance of the assistance system was administered
to evaluate acceptance of the assistance. For example, par-
ticipants were asked to describe their satisfaction with the
assistance system by assigning scores between 0 and 5. The
methods used to evaluate and analyze the questionnaire were
adopted from a previous study [33].

The results for average margin are presented in Fig. 4 and
the results for speed are given in Fig. 5. The figures show the
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change of driving behavior by comparing the other results to
the free driving 1 results, i.e., the initial and original driving
behavior. The average margin and speed of all participants are
summarized in Table I.

In general, the improvement of driving behavior can be
represented by the increasing margin and decreasing speed
compared with the initial driving behavior. As can be seen
in Figs. 4(a) and (c), the margin with weak and strong assis-
tance increased for most part, i.e., precisely 6.4% and 14.0%
mean increase, respectively. Due to the intervention of the
assistance control system, speed decreased dramatically, i.e.,
33.5% and 51.2% on average, as shown in Figs. 5(a) and (c),
respectively. More importantly, solid evident of the positive
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TABLE 11
SYSTEM PARAMETERS

Parameter Value

Ie 0.82
I 0.71
We 3.05
Ww 8.57
Waob 6.31
Ow 2.87
Ox 32.04
oy 5.34
At 0.1s
c 0.98
Ds 0.01
K; 0.382
Ky 0.5

effect on driving behavior is shown in Figs. 4(b) and (d) and
Figs. 5(b) and (d). Although the assistance system is turned
off, the average margin still increased by 3.2% and 9.7%
after the participants experience weak and strong assistance,
respectively. Furthermore, the remarkable decrease of the
passing speed can be observed in Figs. 5(b) and (d), where
the average reduced rates are 10.3% and 22.3%, respectively.
Therefore, from the analysis above, it can be concluded that
the driver’s inherent characteristic is improved after experienc-
ing the proposed assistance system.

Furthermore, as shown in Table I, the acceptance score for
weak assistance is lower than the score for strong assistance.
This result indicates that stronger assistance may reduce accep-
tance in spite of resulting in safer driving behavior. Therefore,
the tradeoff between the strength and acceptance of the system
should be considered seriously when designing the assistance
control.

VI. REAL VEHICLE EXPERIMENT
A. Experimental Setting

The applicability of the system was also tested on a
small electric vehicle at low speed. More critical collision
avoidance maneuvers at higher speed are not suitable for our
experimental conditions at this time. In the current condition,
it is difficult to have a significant number of test drivers
perform the real vehicle experiment. Therefore, the system was
tested by one driver who had experience driving an intelligent
vehicle. However, this driver did not know the purpose of our
research. The driver had five practices runs prior to the formal
test.

In this experiment, the environment was a one-way road
with a vehicle parked on the left side. The road is assumed
to be 7 m (yy1 = 3.5 m, yyy = —3.5 m) wide. The parked
vehicle, which is regarded as the obstacle, is 4.8 mx1.84 m
and located at (xob, Yob) = (40 m, 2 m). The other parameters
used in the system are listed in Table II with their values.

The vehicle states, such as position and orientation are
measured by the RTK-GNSS (Oxford Technical Solutions,
RT3002), as shown in Fig. 6(b), and the signal of steering

Fig. 6. Test vehicle with the experimental equipment; (a) small electrical
vehicle, (b) GPS and IMU.

TABLE III
CONSTRAINT FUNCTION PARAMETERS

fo(x) ki k2 k3 s
Sin(x) 2 200 1 3
Sub1(x) 3 100 4 3
Sub2(x) 2.5 100 3 3
Vb1 (x) 5.56 50 2.78 2
Vav2(x) 8.33 50 4.17 2

Yl Obstacle

Y (m)
Velocity (m/s)
N

0 20 40 60 80 0 20 40 60 80
X (m) X (m)

(@ (b)

Fig. 7. Driving constraints designed for the test, (a) safe driving region,
(b) speed bound.

angle is obtained through the CAN. In addition, the steer-
ing and brake assistance control actions are realized by the
servomotors attached to the steering shaft and brake pedal,
respectively. The software is integrated in a PC (Intel Core
17-4790S 3.2GHz CPU) in the vehicle’s trunk.

To evaluate the assistance system under different conditions,
three combinations of constraints were implemented in the
experiment. Syp1, Sip, and Vyp are applied in Test A; Sup2,
Sib, and Vypy in Test B; and Sypo, Sip, and Vo in Test C. The
parameters of the function for these constraints are given in
Table III and illustrated in Fig. 7. As can be seen in the figure,
compared with Syp2, Syp1 makes the safe driving region wider
at the beginning but narrower when passing by the obstacle.
However, the variation of Sypy is a little milder than that of
Sub1- In addition, on the whole, Vyp; is bigger than Vypi.

B. Visual Warning

It is important to warn the driver before the assistance
control is executed because sudden activation may surprise and
distract the driver. The LED indicator is implemented as the
HMI under the front windshield of the test vehicle, as shown
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Fig. 8. LED on mode O under the front windshield of the test vehicle.

TABLE IV
MEANING OF THE LED MODES

Color and movement of

LED Meaning Mode
Normal green Safe 0
Normal red Need to brake 1
Green left waving Need to turn left 2
Red left waving Need to brake and turn left 3
Green right waving Need to turn right 4
Red right waving Need to brake and turn right 5

in Fig. 8. The color and movement of the LED change to
indicate different warning modes. To make the HMI easy to
understand, we designed six warning modes numbered 0-5,
as listed in Table IV.

Warning timing is a complicated issue that has been inves-
tigated previously [31], [32]. In this study, the warning trigger
condition is simply derived from the condition in the control
law, and it is ensured that the warning comes before the control
operation. As a result, if the driver responds to the warning
quickly, the assistance control may not intervene; otherwise,
the system will control the vehicle concurrently with the driver.

C. Results and Discussions

The results of Test A, Test B, and Test C are shown in Figs.
9, 10, and 11, respectively. Except for the steering/brake
assistance control, the results of the LED warning (Table IV)
are also presented. Note that the label “assistant torque” means
extra steering torque generated by the motor, and the label
“assistant brake” means the percentage of brake pedal travel
due to the proposed system.

In Test A, the assistant steering torque is given at approx-
imately X = 20 to 30 m, where the steering angle exceeds
Omax, to help the vehicle turn a little more to the right.
After overtaking the obstacle, the system no longer intervenes
with human driving. The brake assistance is activated at
approximately X = 20 to 35 m to make sure that the vehicle
passes by the obstacle slowly. In addition, the LED warns
the driver correspondingly. For example, from approximately
X = 20 to 30 m, the LED mode is 5, which indicates that
the vehicle should steer right and slow down simultaneously.
Since the warning comes before the control, the driver could
be well prepared for the assistance.

Compared to Test A, the upper bound of y is changed to
Sub2 in Test B, where the safe driving region near the obstacle
becomes a little larger. As shown in Fig. 10(a), the assistance
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Fig. 10. Results of the instructor-like assistance control in Test B; (a) steering
assistance control, (b) brake assistance control, (c) LED warning.

system allows the ego car to go by the obstacle at a closer
distance compared to the trajectory in Fig. 9(a). Because the
steering angle is always between i, and Gpn,x, the assistant
torque is not generated by the control system. However,
the LED warning still reminds the driver to steer right at
approximately X = 20 because the steering angle almost
reaches Onax. As expected, the assistance control decelerates
the ego car until the vehicle is traveling sufficiently slowly to
pass the obstacle safely.

Compared to Test B, in Test C the speed bound is changed to
Vuba from Vyp1. As a result, the driver may drive the vehicle at
higher speed without the control system intervening. As shown
in Fig. 11(b), the longitudinal acceleration is always less than
the constraint; therefore, there is no assisted brake and the
speed is entirely controlled by the driver. From Fig. 11(a),
it is evident that the avoidance maneuver becomes worse than
that in Tests A and B because the vehicle speed becomes
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Fig. 11. Results of the instructor-like assistance control in Test C; (a) steering
assistance control, (b) brake assistance control, (c) LED warning.

higher. Consequently, the assistant steering torque is greater,
approximately X = 30 to 37 m, and the vehicle moves out of
the safe driving region slightly. Moreover, the LED warning
also helps the driver operate the vehicle within the safe driving
region.

In summary, the test results reflect the characteristic of
the proposed assistance system, i.e., assistance is provided
only if necessary according to the prediction of vehicle
motion. Moreover, the driving constraints significantly affect
the driving behaviors of the ego car. For example, a low bound
for speed is favorable for avoidance maneuvers. Furthermore,
the experimental results showed no unstable system behavior.

VII. CONCLUSION

In this paper, an instructor-like assistance control system
for collision avoidance is developed and tested on a real
vehicle. The primary contributions of this paper are as follows.
(1) An innovative motion prediction method that combines a
simplified dynamics model and a potential field model are
proposed. (2) A more efficient binary search algorithm is
proposed to solve the CSP. (3) Two types of experiment
are designed and conducted to show the significance of the
developed control system. Improvement of a driver’s inherent
collision avoiding behavior is verified and evaluated based on
driving simulator data. The positive effect of the assistance
system is shown by the increase of margin and the reduction
of passing speed. The real vehicle experiment also proved that
the proposed system is practicable to assist the driver to avoid
collision or mitigate risk. The assistance is given only when the
driver fails to operate the vehicle safely; otherwise, the system
will not distract the human driver.

It should be pointed out that a rigorous stability analysis is
not given in this paper. In order to check stability, the dynamics
of the vehicle and the operational characteristics of the human
driver must be considered explicitly. Analysis and modeling of
the human driver’s operational characteristics is an indepen-
dent research topic; thus, we intend to consider the stability

issue in future work. In addition, we will also investigate the
method used to build the constraint model, and the application
of the proposed system will be extended to more complex
driving conditions.
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