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Abstract— This study models the decision-making character-
istics of a driver regarding whether he accepts a merging car
at a highway junction. Then, the application of the modeling
to the design of merging behavior control is proposed. First,
the driving behavior on the main lane at a highway junction is
observed using a driving simulator, particularly focusing on the
driver’s state of decision (SOD), which represents the acceptance
for merging a car coming from the merging lane. Second,
the driver’s SOD is modeled using a logistic regression model
and the prediction performance of the identified model is verified.
Finally, the speed controller of the merging car is designed to
maximize the acceptance from the cars on the main lane. The key
idea here is to minimize the entropy of the SOD of the driver on
the main lane by optimizing the speed of a merging vehicle. This
problem is quantitatively formulated using an identified decision-
making model and addressed by applying a randomized approach
to the optimization. This enables the automated vehicle to realize
a considerate merging behavior at a highway junction. Numerical
experiments are performed to demonstrate the usefulness of the
proposed design scheme.

Index Terms— Driver model, merging behavior, model predic-
tive control.

I. INTRODUCTION

DEVELOPMENT of driving intelligence for the design
of an advanced driver assistance system and/or an

automated driving system is attracting remarkable attention.
The complexity of driving intelligence increases particularly
when considering interaction with other vehicles, because
the so-called “consensus” mechanism must be achieved in
real time with limited information. Although the difficulty
of designing this consensus mechanism highly depends on
the availability of vehicle-to-vehicle (V2V) communication
technology, V2V communication is unlikely to be available
in all cars in the near future.

Merging behavior at a highway junction is a typical task
that requires consensus among cars. In this task, a consensus
must be accomplished in a particularly short time range to
prevent accidents and/or traffic congestion. The difficulty of
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realizing such a prompt consensus is highly evident when
V2V communication is not available. Meanwhile, human
drivers naturally make a consensus with the drivers of other
cars by appropriately considering the behavior of these cars
without V2V communication. Particularly, consideration of the
decision-making characteristics of other drivers is also impor-
tant. Hence, implementing such a considerate consensus mech-
anism on an automated merging car is highly recommended.

Merging behavior has already been investigated in many
literatures. [1]–[5] analyzed the merging behavior by focusing
on a driver’s operation in a merging car. [6]–[8] also attempted
to model a merging behavior for traffic flow analysis and simu-
lations. Many types of driver assistance and partial/completely
automated lane merging systems have also been discussed to
reduce the burden of a driver from the control technology
perspective [9]–[17]. However, these studies mainly focused
on the physical safety index rather than the achievement of a
consensus among cars.

The decision-making characteristics of a driver in the
merging car is analyzed in [18]–[21]. These analyses are
useful to reproduce a precise merging behavior. However,
the decision-making characteristics of the driver in the main
lane must be focused and analyzed for the consensus mecha-
nism design. This perspective is quite useful for the design of
an automated merging car.

The most significant aim of this study is to exploit the
decision-making model of other drivers in the controller
design. This perspective has never been investigated before
and will be a fundamental principle in the controller design of
an automated car in an “interactive situation” with other cars.
Based on these backgrounds, this study aims to verify the
concept of consensus making with other cars at an interactive
situation, particularly focusing on a conflicting scenario during
the merging task with limited and controlled factors.

First, the driving behavior on the main lane at the highway
junction is observed using a driving simulator (DS), partic-
ularly focusing on a driver’s acceptance for the merging car
coming from a merging lane. Second, the driver’s acceptance
is modeled using a logistic regression model and the prediction
performance of the identified model is verified.

Finally, a design scheme of the merging behavior control of
a car on the merging lane is proposed. The proposed control
scheme comprises two-stage controls. The first one is to realize
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Fig. 1. Merging task at a highway junction.

a fast consensus with the cars on the main lane by optimizing
the speed (consensus control). The key idea in this stage is
to minimize the entropy of the state of decision (SOD) of
the drivers on the main lane by optimizing the speed of the
merging vehicle. By exploiting this idea in a model predictive
control (MPC) framework, the vagueness of the decision-
making of the drivers on the main lane is reduced. This scheme
is quantitatively formulated using the identified SOD model
and realized by applying sampling-based MPC, referred to as
randomized MPC (RMPC). The second one is to finalize the
merging task after making consensus in the first stage (merging
control). Owing to the consensus mechanism in the first stage,
the control difficulty in the second stage is reduced. The
proposed control mechanism enables an automated vehicle to
realize a considerate merging behavior at a highway junction.
Particularly, the validity of the proposed design scheme is
demonstrated via numerical experiments.

II. DRIVING BEHAVIOR MODELING ON THE MAIN LANE

A. Target Task and Problem Setting

The final goal of this study is to design a control strategy
of the merging behavior on the merging lane at a highway
junction shown in Fig.1. In the target environment, N cars
(labeled by Car 1 to Car N ) are supposed to run on a
straight main lane following Car 0 without any lane change.
Thereafter, one merging car, Car M , approaches the highway
ramp and cuts in between cars on the main lane.

When we observe the merging behavior of the human
driver, he predicts the behavior of the cars on the main lane
to achieve the merging task safely and smoothly. From this
perspective, we assume that the decision-making and motion
control characteristics of the drivers on the main lane play
an important role in the design of a merging behavior, which
must be represented using a rigorous mathematical model.

B. Definition of State of Acceptance

Figure 2 presents the definition of variables that characterize
the decision-making of a driver in Car E (ego car). These
variables play important roles in modeling the decision-making
characteristics of the driver of Car E whether he accepts the
cut-in of the Car M in front of Car E or not. To formalize
the decision-making characteristics, the state of decision(SOD)
is defined as follows:
State of decision (X S O D ∈ {1, 2, 3})

1) X S O D = 1: ACCEPT
Driver of Car E allows Car M to cut-in in front of
Car E .

Fig. 2. Measurement of driving behavior on the main lane.

2) X S O D = 2: REJECT
Driver of Car E DOES NOT allow Car M to cut-in
in front of Car E .

3) X S O D = 3: UNDECIDED
Driver of Car E is yet to decide ACCEPT or REJECT.

The SOD of Car E at the moment when Car M appears
is UNDECIDED (X S O D(0) = 3). As Car E approaches the
end of the merging lane, the SOD is whether to “accept” or
“reject” depending on the relative behavior of the merging
vehicle. However, the SOD is not observable in real-time appli-
cations. Therefore, we must develop a mathematical model for
estimating the SOD.

Considering that the SOD has a stochastic variance, using a
model that has a probability measure is preferred. In this study,
the probability measure of the SOD of the driver in Car E is
modeled using a logistic regression model. The output of the
logistic regression model is the probability of each state of the
driver in Car E . The input, that is, explanatory variables of the
model, is defined by φ(t). The probability of each state in this
model, P(X S O D(t) = s|φ(t))(s =∈ {1, 2, 3}), is calculated
using a logistic function, which is also referred to as a soft-
max function. The most probable state is estimated using the
maximum of the probability of each state, as follows:
X S O D(t) = arg max

s
P(X S O D(t) = s|φ(t))

= arg max
s

Ps(φ(t)), (1)

Ps(φ(t)) =

⎧⎨⎨
⎨⎩

exp (ηT
s φ(t))

1+exp (ηT
1 φ(t))+exp (ηT

2 φ(t))
, if s ∈{1, 2},

1 − P1(φ(t))− P2(φ(t)), if s = 3,

(2)

φ(t) =
�

1, AE (t)T , EE (t)T
�T

, (3)

AE (t) =
�

d M,E (t), vM,E (t), aM,E (t)
�T ∈ R

3, (4)

EE (t) =
�

d L ,E (t), dγ,E(t), Lw

�T ∈ R
3, (5)

where t is the time index in discrete time, X S O D(t) is the
SOD at time t , and φ(t) is the regressor vector comprising
the variables shown in Fig. 2. Moreover, AE is a variable
set related to Car M , and its element is defined in Table I.
Note that these variables are controllable by adjusting the
approaching speed of Car M . Meanwhile, EE consists of
parameters depending on the configuration of a junction and
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TABLE I

VARIABLE DEFINITION FOR SOD ESTIMATION

positions of Car E and Car L (Table I). The variables in
EE are not controllable from Car M , whereas d L ,E (t) can
be varied depending on the driving of Car L . Note that this
modeling idea is applicable when many cars on the highway
(such as trailing vehicles) are considered by adding some
appropriate explanatory variables.

The parameter vector, ηs(s ∈ {1, 2}), is estimated from a set
of output and input variables, that is, the observed SOD and
regressor vector. (Please see [22] for the identification detail
of the logistic regression model.)

C. Overall Structure of the Driver Model on the Main Lane

The driver model of Car E comprises two parts, namely
decision-making and motion control. The decision-making
part, that is, SOD of Car E , is simulated using a logistic
regression model, as stated in the previous section. Meanwhile,
the motion control part expresses the acceleration/deceleration
behavior of Car E based on three simple PD controllers
assigned to each SOD. The overall structure of the driver
model of Car E is formulated as follows:

y(t + 1) =

⎧⎨⎨
⎨⎩

facc(φ(t)), if X S O D(t) = 1,

frej (φ(t)), if X S O D(t) = 2,

fund (φ(t)), if X S O D(t) = 3,

(6)

X S O D(t) = arg max
s

{P(X S O D = s|φ(t))}, (7)

where t is the time index in discrete time and y(t+1), which is
the output of the driver, is the acceleration of Car E at time
t + 1. In addition, φ is a regressor vector and P(X S O D =
i |φ(t)) denotes the probability of each state calculated using
(Eq. 2) when φ(t) is observed. This P(X S O D = i |φ(t)) is
the decision-making model introduced in the previous section.
This switched PD control model can be regarded as a specified
model of the probability-weighted autoregressive exogenous
model(PrARX model) proposed in [25]. The details of the
applied PD control functions in each SOD are given as follows:

facc(φ(t)) = G
�

dref(1), min(d L ,E (t), d M,E (t)), (8)

min
�

d L ,E (t − 1), d M,E (t − 1)
��

, (9)

frej (φ(t)) = G
�

dref(2), d L ,E (t), d L ,E (t − 1)
�

, (10)

fund (φ(t)) = G
�

dref(3), d L ,E (t), d L ,E (t − 1)
�

, (11)

where di, j (t) is the distance between Car i and Car j at time
t . The function G(dref , dcur, dprev) denotes the acceleration
control to follow the targeting car with reference distance dref ,

G
�
dref , dcur, dprev

	 = k p (dref −dcur)+kd
�
dprev−dcur

	
. (12)

Fig. 3. DS used for the measurement.

Parameters δ = (dref(1), dref(2), and dref(3))T are the ref-
erence distances of each model for ACCEPT , REJECT ,
and UNDECIDED modes, respectively. Furthermore, δ is
determined from the experimental data by calculating the
average of the corresponding reference distance in each SOD.
Note that the parameter δ varies from driver to driver. Car L
is the leading car when the SOD is REJECT or UNDECIDED.
Meanwhile, the small distance from Car E to Car M or to
Car L is regarded as the reference distance when the SOD is
ACCEPT. Parameters kd and k p are used in the PD controller
specified via trial and error, and are assumed to be common
for all drivers.

The obtained model may not have a perfect accuracy for the
car behavior prediction because of the simplicity of the model.
The prediction of the driver’s SOD is the key issue in the pro-
posed method to compute the decision entropy, as explained
in the latter part. Therefore, this study focuses on the decision-
making part of the model rather than the motion control part.
The prediction performance of SOD is verified in section II-F.
Although the prediction accuracy of the closed-loop behavior
of the overall model is not quantitatively discussed in this
paper, we particularly assume that the proposed motion control
model provides better prediction performance of the driving
speed of Car E in short term, at least as compared to a
standard single linear controller model. In addition, MPC,
that is, a receding horizon control used in this study, updates
the prediction by referring to the latest measurement in each
control cycle [33]. The receding horizon control is known as
the control scheme that provides better control performance
than the optimal control if certain modeling errors occur. The
validity of model prediction, including both decision-making
and motion control parts, is verified through the validation of
the entire proposed system in section IV-B.

D. Data Collection for Driver Modeling

First, the driving data are collected using a DS to identify
the driver model. The DS used in this study is shown in Fig.3.
It has three main screens to display frontal 180◦ angle of the
horizontal view. A side screen providing the view from -90◦
(left) to -120◦ (left back) is added to obtain a wide view on the
left side. In the DS, an actual dashboard is placed to emulate
reality. Three small monitors are also attached at the room
mirror, where the right and left door mirrors are designed to
provide the rear views to the driver. The dynamics of the ego
car motion is computed using the Carsim commercial software
from Mechanical Simulation Inc.
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TABLE II

INITIAL CONDITION IN THE MEASUREMENT OF Car M

The simple straight expressway with two lanes, as shown
in Fig. 2, is used as the driving environment for data collection
to simplify the problem. The merging car, Car M , and Car
L are driven automatically using a certain control algorithm
explained later. The drivers are supposed to drive Car E by
simply following the leading car, Car L , according to their
usual driving. Some of the drivers’ characteristics influencing
the driving, such as the rushing situation and distraction caused
by drowsiness and/or fatigue, are removed from our model to
avoid complexity, leading to the intractability of the controller
design.

A total of 28 drivers participated in this experiment and
submitted informed consent prior to the experiment. Car L
runs at a constant speed (22.22m/s) as usual driving. Prior to
position pα in Fig.2, the driver cannot see Car M because
a tall noise barrier is present on its left side (referred to
as unrecognizable area). After passing pα, the noise barrier
becomes low; hence, the driver can see Car M (referred to as
recognizable area). The acceleration area starts from position
pβ and ends at position pγ . Car M starts moving after
Car E passes 50[m] ahead from pα and constantly moves
along the predetermined driving path. Car M must change its
driving lane to the main lane before the end of the merging
lane.

Each driver (in Car E ) drives 100 times with different
approaching scenarios of Car M . Sixty experimental scenarios
are randomly selected by changing the initial position, speed,
and acceleration of Car M , as listed in Table II. Additional
20 approaching scenarios are generated by intentionally apply-
ing acceleration or deceleration to Car M between pα and
pβ to increase the number of scenarios. Furthermore, 20 more
speed patterns are generated for Car M , which refers to the
approaching profile of a human driver assuming that Car E
and Car L drive at a constant speed (pre-experiments are
performed for this task).

From the identification perspective, controlling the “input
signal”, i.e., speed pattern of Car M and Car L ) is impor-
tant to cover various driving scenarios. Particularly, we test
80 different driving scenarios to capture the natural driving
behavior of the driver on Car E , as mentioned previously.
Consequently, the explanatory variables of the model vary
widely, which is sufficient for the identification process.

During the experiment, the variables listed in Table I are
observed every �t = 100ms. Given that the SOD is not
directly observable in the standard setup of the cockpit, we
attach a push button (“accept” or “reject”) on the steering
wheel, and the drivers are requested to push either the “accept”
or “reject” button according to their SOD (Fig.4). If the driver
decides to ACCEPT the merging of Car M in front of Car
E , he pushes the “accept” button. The decision once made

Fig. 4. Switches attached on the steering wheel.

Fig. 5. Example of the measured data profile (ACCEPT case).

can be changed at any time during a trial depending on the
behavior of Car M .

Examples of the observed data are shown in
Figs.5 and 6. They illustrate the profiles when the driver
ACCEPT and REJECT Car M , respectively. The horizontal
axis represents time [step], whereas the vertical ones show
the variables listed in Table I and the observed SOD. The
data measurement starts when Car E passes point pα and
finishes when either Car E or Car M reaches point pγ .

E. Samples of the Identified Driver Model

In this section, several samples of the identified driver model
are discussed, particularly focusing on the SOD, i.e., the
logistic regression model. The obtained driver model varies
from driver to driver (personalized model). For convenience,
the driver model for driver j ( j ∈ {1, · · · , 28}) is described
by M j = [η j T

, δ j T ]T .
The identified parameters of the driver model for driver j =

1 and j = 3 are listed in Table III. In addition, the average
and standard deviation of these parameters among all drivers
are listed in Table IV. Note that the average and standard
deviations are those of the parameters of all drivers and not
the parameters of the average driver model, which is obtained
from the measurement of all subjects shown in section IV-
B. η1 and η2 are the parameters of the logistic regression
model that specifies the switching condition of the state
between UNDECIDED and ACCEPTand between UNDE-
CIDED and REJECT, respectively. Given that all regressor
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Fig. 6. Example of the measured data profile (REJECT case).

TABLE III

EXAMPLES OF THE OBTAINED PARAMETERS

OF THE DRIVER MODEL

TABLE IV

AVERAGE AND STANDARD DEVIATIONS OF
THE OBTAINED PARAMETERS

variables are normalized, the magnitude of these parameters
represents the importance of the corresponding variables in
the decision-making characteristics of the acceptance.

The results listed in Table III of driver j = 1 implies that
d M,E (i.e., relative distance between Car E and Car M ) plays
the most important role in the decision on the acceptance of
the merging of Car M . In addition, vM,E (i.e., relative speed
between Car E and Car M ) is more important to decide
the rejection of merging than d M,E . Meanwhile, the driver

Fig. 7. Distribution of distance d L ,E in each SOD.

Fig. 8. Distribution of speed v E in each SOD.

j = 3 pays substantial attention to d M,E in both switching
from UNDECIDED to ACCEPT and REJECT. Note that the
significance of each regressor variable for decision-making
varies from driver to driver.

The distribution of d L ,E , that is, the relative distance
between Car E and Car L , and vE , that is, the driving
speed of Car E , of drivers 1 and 3 are depicted in Fig.7
and Fig.8, respectively. In Fig.7-(1), a clear difference in
the distribution of d L ,E can be observed among the decision
states for driver 1. Normally, d L ,E becomes shorter than the
other states when SOD is REJECT to show the intention to a
merging car. Moreover, the histograms of the relative distance
of driver 3 in ACCEPT and UNDECIDED are similar. This
implies that driver 3 does not change the following distance
irrespective of whether he accepts or not. The parameters
δ = (dref(1), δ = dref(2), andδ = dref(3))T to follow Car L
is determined by obtaining the average of d L ,E in each state,
as discussed in section II-C. The driving speed has a clear
difference between the ACCEPT and REJECT states of both
drivers 1 and 3 in Fig.8. Both drivers 1 and 3 accelerate, pre-
venting Car M from merging into the front of Car E in the
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Fig. 9. 2D distribution of the distance and driving speed in each SOD.

REJECT state, and decelerate in the ACCEPT state to secure
additional margin. In Fig.9, two-dimensional (2D) histograms
of the relative distance and driving speed of drivers 1 and
3 in each SOD (ACCEPT , REJECT and UNDECIDED ) are
presented. Although the data distribution of drivers 1 and 3 is
similar in UNDECIDED , a large difference can be observed in
the ACCEPT and REJECT states. Driver 3 can be considered
as a more aggressive driver than driver 1 because the former
takes shorter distance and higher speed in the REJECT state.

An important advantage of the driving behavior modeling
by separating the decision-making and motion control parts is
the understandability of the model. This is more emphasized
when we are required to develop a driver model for a complex
environment. Although a considerably complex model, such
as a deep neural network, sometimes provides high estimation
performance, realizing a clear meaning of the obtained model
is often not easy. This condition will be a negative factor to
be exploited for the design of the control strategy discussed
in a later section.

F. Verification of the Identified Model

The model of the decision-making part is again focused
and verified in this section. SOD is estimated using the
identified logistic regression model and the estimation accu-
racy is tested with a cross-validation method. The five-fold
cross-validation method is applied to verify the estimation
performance of SOD. Each driver model obtained from each
driver’s measurement is tested independently.

Figure 10 shows the technique of evaluating the correctness
of the estimated SOD. The red dashed line indicates one

Fig. 10. Evaluation of model estimation.

Fig. 11. Success ratio of the merging acceptance state estimation.

of profiles of the observed SOD in the experiment, which
is introduced in section II-D. The blue dashed line denotes
the profile of the estimated SOD using the identified logistic
regression model in section II-E. Furthermore, t∗ is the time
when SOD is switched from UNDECIDED to the other states,
i.e., the time when either the ACCEPT or REJECT button on
the steering wheel is pushed. This time is assumed as the time
instance in this study when the driver has made the decision.
Given that the accuracy of the model cannot be perfect, the
estimated profile of SOD may have an estimation error or
delay. A trial is regarded as successful if the SOD estimated
by the model matches the observed one after κ [steps] from
t∗. The success rates, Rsuccess(κ), are calculated by counting
the successful trials among the 100 trials for the given κ . That
is, the success rate Rsuccess(κ) evaluates the rate of the trials
wherein the obtained model can estimate the measured SOD
by using the identified model until κ steps after the driver’s
decision-making process.

Figure 11 shows the result of the success rate at κ = 0,
κ = 10, and κ = 20 steps (equivalent to 0, 1, and 2 s,
respectively) and at t � (the time when Car E reaches pβ ).
Note that the duration from t∗ to t � differs in each trial
because the decision-making time t∗ and the driving speed
of these cars vary. Generally, the estimated probability of
the SOD tends to converge to ACCEPT or REJECT as Car
E approaches the end of the merging lane, as denoted by pγ

in Fig.1. Therefore, Rsuccess normally increases with κ . The
average of the resulting success rate at time t � is 95.5%. This
result indicates that the proposed model can estimate the SOD,
i.e., whether Car E allows the merging of Car M or not with
95.5% accuracy before Car E reaches the start point of the
acceleration area, pβ .

The result shows the practical accuracy despite the simple
structure of the model. However, potential improvement can
be achieved on its accuracy.

Two strategies are used to improve the constructed model.
The first idea to improve the model is changing the model
structure and adding additional explanatory variables that may
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affect the driver’s decision-making and driving speed. For
example, some conditions of the driver, such as rushing,
drowsiness, and fatigue, may influence his driving. Several
studies have attempted to capture this type of driver state
[35] in real time. These states can be candidates of additional
explanatory variables once they are measured. In addition,
other cars that are not involved in the model, such as cars in
front of Car L, behind of Car E, and in front and/or behind
of Car M , may have an effect on both decision-making and
speed control of the drivers of Car M and Car E . To include
these factors, further experiments and measurements with an
appropriate task setting are necessary.

The second idea to improve the accuracy of the model
is considering slow changes in the parameters. The driving
behavior changes gradually during driving depending on the
driver’s fatigue and driving experiences. To address these
slow changes, the identified model can be adapted online
by updating these parameters gradually by using a real-time
system identification technique [25]. However, further studies
are necessary for these accuracy improvements in the future.

In this study, the average driver model will be used for pre-
diction in the MPC in a later section. However, the prediction
performance of MPC can also be improved if a highly specific
driver model is available, which is characterized by classifying
the obtained models based on the driving tendency, such as
aggressive and conservative. By using the representative driver
model for each class of driving tendency in this case, the
control performance of MPC will be improved. In addition,
recognition of the driving tendency of the surrounding cars is
easier than estimating the individual model parameters in real
time.

III. FORMULATION OF THE MERGING BEHAVIOR

CONTROL BASED ON DECISION ENTROPY

A. Overview of the Proposed Control Scheme

This section proposes a novel control method for merging
behavior using the obtained driver model of the car on
the main lane. The proposed control method considers not
only the motion of the cars on the main lane but also
their decision-making characteristics, i.e., SOD. This algo-
rithm is supposed to be implemented on the merging car
(i.e., Car M ).

The proposed control scheme comprises a two-stage speed
control of the merging car. The first one is to achieve a
fast consensus with the cars on the main lane by optimizing
the speed (consensus control). The key idea in this stage is
to minimize the entropy of the SOD of the drivers on the
main lane by optimizing the speed of the merging vehicle.
By exploiting this idea in the MPC framework, the decision-
making vagueness of the drivers on the main lane is reduced.
This scheme is quantitatively formulated using the identified
decision model and realized by adopting the RMPC approach.
The second one is to finalize the merging task after achieving
a consensus in the first stage (merging control). Owing to the
consensus mechanism at the first stage, the control difficulty
in the second stage is minimized.

Fig. 12. Example of high-entropy case.

Fig. 13. Example of low-entropy case.

B. Decision Entropy of Acceptance

A novel quantitative index, “decision entropy,” is introduced
to evaluate the vagueness of the SOD of the driver. The
decision entropy, Sc(t), at time t is defined using a decision
model as follows:

Sc(t) = −
3


s=1

Pc
s (t) × log2 Pc

s (t), (13)

Pc
s (t) = P(XC

D(t) = s | φc(t), M j (c)), (14)

where c is the index of the car on the main lane and the
function j (c) returns the index of the driver model assigned
to Car c . Furthermore, XC

D(t) and φc(t) are the SOD and
regressor vector of Car C at time t , respectively. P j

s (t) is the
probability that the SOD utilizes a state of s at time t with the
driver model j . This decision entropy, Sc(t), uses a smaller
value if the probability of all states is close to 0 or 1.

The sample profiles of SOD probability in the case of high
and low entropies are depicted in Figs.12 and 13, respectively.
These profiles are calculated using the observed driving data.
As shown in Fig.12, both ACCEPT and REJECT probabilities
are increasing before t = 35 s. This implies that the decision-
making of the driver is not completed before t = 35 s; hence,
the decision entropy employs a large value in this duration.
Meanwhile, the profiles of SOD probability shown in Fig.13
converge faster to 0 or 1 than that in Fig.12. Thus, the decision
entropy utilizes a smaller value in a short time duration than
the case in Fig.12. This implies that the driver in this case
can make a decision more easily than that in the high-entropy
case.

C. Formulation of Consensus Control

The consensus control is designed for Car M to optimize
its approaching speed by minimizing the decision entropy of
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e drivers on the main lane. The MPC framework is used
as a basic control scheme. MPC is known as a promising
control strategy that can optimize a specified cost function by
considering the physical constraint and dynamical model of
the target system in real time.

The total decision entropy of all drivers on the main lane
over a certain finite horizon is regarded as the cost function.
Hence, the proposed control scheme is assumed to render the
decision-making of drivers on the main lane easy by reducing
the vagueness of the decision. To achieve this objective,
the MPC-based consensus control is formulated as follows.

given:

x(0|t) = x(t), Lw, (t ∈ {1, 2, · · · , T }) (15)

find:

uM (k|t) (k ∈ {1, 2, · · · , K } (16)

which minimize:

Jcons(t) =
K


k=1

N

c=1

Sc(k|t)

Sc(k|t) = −
3


s=1

P(Xc
S O D(k|t) = s|φc(k|t), M j (c)) (17)

× log2 P(Xc
S O D(k|t) = s|φc(k|t), M j (c)) (18)

subject to:

uM I N � uM (k|t) � uM AX (19)

pc(k +1|t) = pc(k|t)+vc(k|t)�t for ∀c ∈ {0, · · · , N}
(20)

vc(k +1|t) = vc(k|t)+ac(k|t)�t for ∀c ∈ {0, · · · , N}
(21)

ac(k|t) = f (M j (c), φc(k|t)) for ∀c ∈ {1, · · · , N}
(22)

a0(k|t) = 0, (23)

T H W F ( j |t)= (pF ( j |t)− pM( j |t))/vM ( j |t) > T H W th

for ∀ j ∈ { j |pγ − 50 < pM ( j |t) < pγ }
(24)

Here, t is the current time and k is the time index in
the prediction horizon. In addition, K is the total number
of steps in the prediction horizon (i.e., length of horizon)
and N is number of cars driving on the main lane except
Car 0 . The state of first step in the prediction horizon,
x(0|t) = [p0(0); v0(0); p1(0); v1(0); · · · ; pN (0); vN (0)],
comprises the position and speed of cars on the main
lane observed at time t . The input uM (t) (driving speed
of Car M ) is limited between uM I N = 16.67 m/s and
uM AX = 33.33 m/s. The time headway, T H W th , is also
restricted to be higher than T H W th (set to 0.5 s in this study)
for the closest leading vehicle on the main lane (Car c-1 ).
Meanwhile, the acceleration of Car c in (22) is calculated
from the motion control model defined in section II-C. The
cost function Jcons(t) evaluates the total decision entropy of
cars from Car 1 to Car N over the prediction horizon.

D. Merging Control

After realizing consensus with the drivers on the main lane,
the merging task is finalized by executing the merging control.
The most important requirement for this second stage control
is safety. Although the control objective is changed from the
first stage (consensus control), similar MPC-based control is
used for merging control. Only the cost function is modified
after the consensus is made.

The condition to determine whether a consensus was made
is defined as follows:
[P B(X S O D(t)=1)> pth] ∧ [P F (X S O D(t)=2)> pth], (25)

where P B(X S O D(t)) and P F (X S O D(t)) represent the esti-
mated probability that the closest behind vehicle (Car B )
on main lane accepts the Car M and the closest frontal
vehicle (Car F ) on main lane rejects the Car M , respectively.
Threshold pth in this study is set to 0.9.

The cost function used for merging control is expressed as
follows:

Jmerg(t)=w1�dref − d F,M (1|t)�1+w2�vF,M (1|t)�1, (26)

where dref(= 25m) is the reference distance, and d F,M (1|t)
and vF,M (1|t) are The longitudinal distance and relative speed
between Car M and Car F at time t and step k = 1 in
the prediction horizon, respectively. Furthermore, � · �1 is
1-norm (i.e., absolute value). The weight parameters w1 and
w2 are determined by trial and error. This cost function mainly
focuses on driving safety to finalize the merging task.

Although various control methods for merging have been
suggested, we adopt the previous MPC-based idea to be con-
sistent with the consensus control. This leads to the advantage
of the proposed strategy for the implementation.

For the lateral motion, a remarkably simple lateral controller
for Car M is introduced as follows:

uM
y (t) =

⎧⎨⎨
⎨⎩

−0.05, if[pβ < pM (t)] ∧ [d M,B > dref ]
∧ [d F,M > dref ]

0, otherwise,

(27)

where uM
y is the lateral speed and the reference distance dref

is set to 25m.

E. Implementation of MPC Using a Randomized Approach

The proposed MPC problems in section III-C and section
III-D include nonlinear cost function and constraints. Hence,
a nonlinear optimization solver, which sometimes leads to
undesirable computational complexity and time, must be
applied. To overcome this difficulty, RMPC [26]–[28] is intro-
duced to compute a semi-optimal solution. Recently, RMPC
has attracted attention as a promising strategy for stochastic
MPC and/or nonlinear MPC problems [30].

The basic idea of RMPC is based on random input sampling
similar to the Monte Carlo method and forward calculation of
state prediction. The cost function is computed for each input
sample and the best sample is adopted as the suboptimal input.

Similar to the standard MPC scheme, the optimization of
the input over a finite prediction horizon is executed every
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Fig. 14. Example profiles of sampled input series (Ns = 100).

TABLE V

PARAMETERS IN VALIDATION

control cycle. The first step of RMPC is to generate samples
of the input series, uM (k|t) over ∀k ∈ {1, 2, · · · , K } at
time t . These are generated according to the following uniform
distribution.

P(�uM (k|t)) =
�

1/2h, if �uM (k|t) ∈ (−h, h) ,

0, otherwise,
(28)

Here, �uM (k|t) = uM (k+1|t)−uM (k|t) is the time difference
of the control input (speed of Car M ) over one control cycle
(0.1 s), h is the value range of �uM (k|t), and h = 0.98 × �t
is used in this study. This is decided by considering the time
constant of the dynamics of the car. The input series is referred
to as a random walk process. Examples of the generated input
series with the number of samples Ns = 100 are shown in
Fig.14. Importantly, this distribution should be determined to
cover the input and state space to find the “optimal” solution.

An input series that employs the minimum value in the
cost function is used as a suboptimal solution, and the first
step signal in the series is applied to Car M (similar to
the standard MPC). Discussions on the number of required
samples for assurance of quality of the solution are available
[31]. According to the discussion in [31], Ns 	 458 is obtained
for the proposed RMPC by setting the level to α = 0.01 and
confidence 1−σ , where σ = 0.01. Therefore, Ns is set to 500
in the experiments.

IV. VERIFICATION THROUGH NUMERICAL EXPERIMENTS

A. Simulation Setting

Numerical experiments are performed to verify the useful-
ness of the proposed merging behavior control. The target
situation is shown in Fig.1.

We assume that Car M and the cars on the main lane
cannot see each other before reaching pα (x M(t) = 1000),
where x M (t) is the longitudinal position of Car M .

Car M , whose position is between pα and pβ (x M (t) =
1000–1300), is noticeable from the cars on the main lane (Car
1 –Car N ) and from Car M , and vice versa. The accelerating
lane begins from point pβ (x = 1300) and ends at point pγ

(x = 1500). Car 0 , the leading car of the car fleet, runs with

TABLE VI

PARAMETERS OF THE AVERAGE MODEL Mave

a constant speed of v0 = 22.22 m/s. The behaviors of Car 1
,· · · , Car 5 are simulated using the identified driver model
obtained in section II. Various driver models are randomly
assigned to the cars from all 28 obtained driver models,
M j ( j = {1, · · · , 28}). kd = 0.001 and k p = 0.005 are used
for (8) in these driver models.

One of the critical issues for the design of merging control is
the availability of communication among the cars. Regarding
the current technological situation of the vehicle, an automated
car is required to consider the behavior of the car driven
manually without any communication capability. Therefore,
we assume that Car M can obtain relative information to the
cars on the main lane by using implementable sensors but
cannot know which driver model is assigned to Car 1 to Car
5 in the simulation. Instead of using the individual model
to predict the driving behavior of Car 1 –Car 5 , an average
model Mave, which is identified using all participants’ driving
data, is used for MPC.

The parameters of the average model are listed in
Table VI. However, note that the identified reference distances,
dref(i), are not directly used. This is because the reference
distances, which highly depend on the preference of the driver
on the main lane, are sometimes predictable by sensing their
behavior without any communication. Thus, these parameters
are calculated using the following equation to improve the
prediction performance of the behavior of cars in the main
lane.

di
ref(s) =

⎧⎨⎨
⎨⎩

di−1,i (0), if s = 1,

(54.8/40.3) × di−1,i (0), if s = 2,

(39.4/40.3) × di−1,i (0), if s = 3,

∀i ∈ {1, 2, · · · , 5} (29)

This adaptation is in accordance with the idea that the refer-
ence distances di

ref(1) and di
ref(2) for Cari are proportionally

adjusted on the basis of the initial observation of the distance
between the target car and the car in front of it.

The initial distance between Cari and Cari − 1 for i ∈
{1, 2, · · · , 5} is set to di

ref(3) of the driver model M j (i), which
is assigned to each car at the start of the simulation. The initial
position of Car M is randomly determined from the uniform
distribution with the range of [p3(0)−30, p3(0)+30], as listed
in Table V. Other parameters used in the simulations are also
listed in Table V. The numerical experiments are performed
10,000 times by changing the initial position of Car M and
driver model assignment for the cars on the main lane.

B. Simulation Results

Figure 15 shows one of the resulting profiles of
the positions of all considered cars. The driver models,
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Fig. 15. Resulting profiles of the vehicle’s position.

[M25, M11, M16, M15, M12] are assigned to Car 1 –Car 5
in this simulation. The initial position of Car M is set to
p3(0) + 0.2. Meanwhile, the horizontal and vertical axes
represent the position and time, respectively.

Here, a “completion time of consensus,” tcons , is defined to
evaluate the time required to complete the consensus making.
tcons is defined as the time when the SOD of Car F and
Car B estimated by Car M (using the average model) agree
with the SOD computed using the independent driver models
assigned to Car F and Car B . tcons is the minimum value
of τ ∈ {1, 2, · · · , T } that satisfies�

[X̄ B
D(τ | Mave) = X̄ B

D(τ | M j (B))] ∧ [X̄ B
D(τ | Mave) 
= 3]



∧

�
[X̄ F

D(τ | Mave) = X̄ F
D(τ | M j (F))] ∧ [X̄ F

D(τ | Mave) 
= 3]



X̄ c
D(τ | M j ) =

⎧⎨⎨
⎨⎩

1 if P(Xc
D(t) = 1 | φc(t), M j ) > pth

2 if P(Xc
D(t) = 2 | φc(t), M j ) > pth

3 otherwise
∀c ∈ {F, B}. (30)

Here, T is the number of simulation steps and X̄ c
D(τ | M j )

denotes the estimated SOD of Car F or Car B using the
driver model M j (either driver model assigned to Car F and
Car B or average model) under a specified threshold on
the probability. Then, X̄ B

D(τ | Mave) represents the estimated
SOD of Car B using the average model (used in MPC) and
X̄ B

D(τ | M j (B)) indicates the estimated SOD of Car B using
a driver model assigned to Car B . Note that the latter is used
only for verification and is not available for MPC.

In Fig.15, the black dashed line shows the completion time
of the consensus control, tcons , in case of pth = 0.9 (tcons =
95 step), and blue dashed line shows the time to finalize the
merging into the main lane (t = 237 step). The vertical purple
dashed lines represent the points pα, pβ , and pγ . Figure 16
shows the top views of the car positions at time steps t = 95
and 237. Here, triangles indicate the cars and red and blue
colors represent the computed SOD of the cars on the main
lane (blue: ACCEPT, red:REJECT ). In this example, the cars
achieve consensus when Car M passes 150 m ahead of the
start position of the acceleration area.

The proposed merging behavior control is compared with
the constant speed control to verify the usefulness of the
former. In the constant speed control, the speed of Car M
is set to vM = 22.22[m/s] during its entire merging task.

Fig. 16. View of the simulation at t = 95 step (top) and t = 237 step
(bottom).

Fig. 17. Resulting consensus completion rate (pth = 0.9).

Fig. 18. Resulting consensus completion rate in initial difficult condition
(pth = 0.9).

The relation between the consensus completion rate (CCR)
and position of Car M is depicted in Fig.17 under the
threshold pth = 0.9. CCR is defined as the ratio of the
number of simulation trials that realize consensus before Car
M passes the position x in all simulation trials. The blue
and green dashed lines represent the profiles of CCR of the
proposed merging behavior control and constant speed control,
respectively. As the position of Car M advances to the end
of the acceleration area, the CCRs of both methods, as well as
the difference between them, increase. The proposed control
provides 18.1 point higher than the constant speed control in
the CCR at point x = 1300 m, that is, the start point of the
acceleration area. In case of the proposed merging behavior
control, Car M completes the merging into the main lane
at an average of approximately x = 1400, and 86.9% of all
simulation trials achieve consensus with cars on the main lane
before passing x = 1400.

Finally, a considerably difficult situation is tested with a
limited number of trials. The sampling range for the initial
position of Car M is changed to [p3(0) − 10, p3(0) + 10]
in this simulation. The resulting CCR is shown in Fig.18.
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Considering that Car M starts from a closer position to
the car driving on the main lane (in this case, Car 3 ),
achieving a consensus between Car M and Car 3 becomes
difficult. Consequently, the CCR with constant speed control
indicates much lower values than the previous case. However,
we confirm that the proposed merging behavior control can
maintain a high CCR even in a difficult situation. Hence,
we assume that the proposed control can reduce the decision-
making burden of the drivers on the main lane.

V. CONCLUSION

In this study, the decision-making characteristics of the
driver on the main lane, whether he accepts a merging car or
not at a highway junction, were modeled and the application
of the model to the design of merging behavior control was
proposed. First, the driving behavior on the main lane at
the highway junction was observed using a DS. Particularly,
the driver’s acceptance for a merging car coming from the
merging lane was focused in the measurement. The measured
driver’s state of acceptance was quantitatively modeled using a
logistic regression model, and then, the prediction performance
of the identified model was verified. Second, a design scheme
of the merging behavior control of the car on the merging lane
was proposed, which comprised a two-stage control, namely
consensus control and merging control. Both control schemes
were realized using the RMPC framework. The consensus
control used the entropy of the state of acceptance of the driver
on the main lane as the cost function. Owing to this control,
a considerate merging behavior was realized. The results of the
numerical experiments demonstrate that the proposed control
scheme has a high contribution potential to the implementation
of an automated vehicle in an actual traffic environment.
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