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Real-Time Implementation of Randomized Model
Predictive Control for Autonomous Driving

Arun Muraleedharan , Hiroyuki Okuda , Member, IEEE, and Tatsuya Suzuki , Member, IEEE

Abstract—Model predictive control (MPC) using randomized
optimization is expected to solve different control problems. How-
ever, it still faces various challenges for real-world applications.
This paper attempts to solve those challenges and demonstrates a
successful implementation of randomized MPC on the autonomous
driving using a radio-controlled (RC) car. First of all, a sample
generation technique in the frequency domain is discussed. This
prevents undesirable randomness which affect the smoothness of
the steering operation. Second, the proposed randomized MPC is
implemented on a Graphics Processing Unit (GPU). The expected
GPU acceleration in calculation speed at various problem sizes
is also presented. The results show the improved control perfor-
mance and computational speed that was not achievable using
CPU based implementation. Besides, the selection of parameters
for randomized MPC is discussed. The usefulness of the proposed
scheme is demonstrated by both simulation and experiments. In the
experiments, a 1/10 model RC car is used for collision avoidance
task by autonomous driving.

Index Terms—Autonomous vehicles, graphics processing unit
(GPU), model predictive control, sampling based optimization.

I. INTRODUCTION

MODEL Predictive Control (MPC) [1]–[3] is a popular
control method for multi-variable constrained control

problems. Although MPC had first appeared in [4] published in
the 1960s, the major growth in its application emerged later as
the result of the improvements in computational resources. The
model in MPC stands for the underlying model representing the
dynamics of the system being controlled. This model enables
future prediction of the controlled system. In addition, MPC
observes the state at each control cycle. This makes the system
tolerant of environmental changes in real-time. Motion control
is a problem that has been difficult to handle in real-time. It is,
however, well addressed by MPC due to its above-mentioned
advantages. Autonomous driving has positioned itself in the
difficult end of motion control problems. Being highly dynamic
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and safety-critical, it requires the calculation of accurate control
inputs in real-time. The computation involved within the MPC to
solve the model-based optimization problem has been challeng-
ing in real-time implementations. One of the ideas to overcome
the computational complexity is a sampling based MPC called
Randomized MPC (RMPC) [5]–[10] that enables us to balance
computational demands at the expense of accuracy. Regardless
of its simplicity in implementation, RMPC explores the global
solution space and perform strict constraint satisfaction checks
in every iteration. The infinite horizon stability and optimality of
RMPC are proven in [5] and [7], respectively. Lack of an index
of optimality and being semi-optimal at the same time remains
to be a challenge in RMPC application.

On the other hand, behavior control of an autonomous vehi-
cle can be seen as two distinct tasks- path planning and path
following. They are executed alternately. Planning has to be
repeated since the planner has to consider constraints on safety
such as collision avoidance and speed limitation. This is in
addition to the basic target of path planning for keeping a lane,
overtaking, etc. Many path planning schemes have been well
demonstrated in robotics and automotive applications as seen
in [11]–[14]. Considering that the car has an updated path that is
planned, the next step is to follow it accurately. For accurate path
following, a controller needs to observe the present state of the
car and provide correct steering and acceleration inputs. There
have also been many works on path following [1]–[3], [15],
[16]. Path following control could be performed using various
control strategies such as proportional–integral–derivative (PID)
control, state feedback controllers, MPC, and so on. Having
the path planning and tracking as two different processes is a
popular method in the literature. Considering vehicle dynamics
constraints in both stages separately implies that such con-
sideration becomes unnecessarily redundant. Combining these
two into one problem formulation clearly has the benefit of
a lower computational burden by removing redundancies in
vehicle dynamics calculations. Such combined problems are
often referred to as simultaneous motion planning and control
(SMPLC) problem [17]–[19].

During the studies on SMPLC by the authors in [17] and [18],
real-time implementation of SMPLC was found to be facing
various challenges. The major challenge was due to the computa-
tional complexity in solving an SMPLC problem. Some notable
examples that had demonstrated real time steering control with
non-linear MPC are [3] and [20]. The work [3] has reported
an average computation time, which is over 150 ms, limiting
their stable experiment speed at 7 m/s. While, [20] demonstrates
an average processing time of 60 ms (with pre-calculated in-
variant sets), enabling multiple obstacle avoidance at a speed
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of 14 m/s. Both [3] and [20] show obstacle avoidance while
driving on a straight road. The strict real-time limits associ-
ated with a safety-critical problem like autonomous driving
made it difficult to find an optimal solution in real-time. Even
sampling-based optimization schemes like RMPC could not be
realized in necessary control frequency with traditional CPU
based implementation. During the simulation study of RMPC for
vehicle control, another issue was also noticed. The randomness
in the sampling step was found to give a negative impact on the
smoothness of the car which is being driven. This will be more
emphasized when the RMPC is applied to passenger vehicles
rather than autonomous robots. This necessitates a need for a
smoothing technique in the sampling phase so that the control
action remains smooth.

By taking a deeper look at the RMPC framework, the observer
would notice its inherent nature of parallelism. The sequence of
processes like series creation and calculation of cost could be
performed on all sample points simultaneously. This interesting
feature of RMPC can directly be linked to the parallel processing
feature of a Graphics Processing Unit (GPU). At present, every
application that contains abundant parallelism is showing inter-
est in GPUs. GPUs are of interest due to their significantly larger
computational throughput in comparison to the CPUs, which are
built for higher latency. This gives GPU’s a tremendous potential
to improve the computational speed of applications with massive
parallelism [21].

Previous works on sampling based MPC can be divided into
two categories. The first category is the development of the
sampling based solver for MPC [5], [22], [23]. The second
one is the study focusing on the implementation of Sampling
based MPC [24]–[28]. In the first category, [22] developed
a method that searches the control space by seeding a tree
from the previous best sample and expanding it in a manner
similar to rapidly exploring random tree (RRT). The paper [5]
suggested a sampling based MPC for one-leg robot navigation
using a potential field representation of obstacles. Even though
implementation is not the focus of this work, the authors claimed
that they could improve performance only at the expense of
computational load. The paper [23] applied a modified version
of RMPC to the drive of high-speed RC cars, which enabled
faster real-time computation.

In the second category, the control of a drinking water network
is addressed in [24]. Since the network is large and contains
multiple controllable elements, a GPU based implementation
was suggested. Although the problem size is large, this applica-
tion adopted longer control intervals than the case of controlling
a car due to its slow dynamics. In [25], the authors success-
fully controlled a mobile robot for obstacle avoidance using an
embedded GPU. Here the robot dynamics were considered as
a point mass model and the robot speed was extremely low.
Different approaches for nonlinear model predictive control
that runs on GPU can be seen in papers [26] and [27]. The
optimization algorithms used were not sampling based in nature
and the application domain was much different from the control
of an autonomous vehicle. Finally, in the survey paper [28], a
summary of various parallel implementations of MPC was de-
scribed. This paper presents a detailed discussion of the present
challenges that MPC faces and how parallel computation helps
to solve those challenges. This paper concludes that the majority
of GPU based implementations are faster in doing calculations,

but suffer from a high overhead of memory transfer time and
kernel creation time. Once combining the time of overheads
and calculation, any improvement over the CPU case is not
significant at regular use cases.

Since none of the previous works directly addressed au-
tonomous driving with RMPC, we have studied the feasibility
of the RMPC for autonomous driving. The paper [17] has
implemented obstacle avoidance driving of a car using RMPC
in simulation. This paper suggested some ideas to smoothen the
randomness by sampling in the frequency domain. This idea
showed smoother steering input, however, the controller was
restricted to straight line driving at a constant speed. Also, the
effectiveness was verified only in simulation with pre-calculated
inputs. In addition, the ego car being represented with a bicycle
model, this study concluded that more computational power is
necessary to use the RMPC in real-time. This demand for com-
putational improvement was also investigated in our previous
works [29] and [30]. Computation speed of linear MPC problems
was accelerated using GPU in [29], however, this was limited to
linear MPC problems. On the other hand, [30] discussed some
preliminary results showing the GPU’s potential to accelerate
RMPC. This study was also limited to simulations and to straight
line driving at constant speed.

Based on these considerations, this paper addresses the RMPC
as a solution for autonomous driving control. First, it extends the
previous works [17] and [30] with an improved vehicle model,
thereby removing the limitations of driving only in straight
line and with a constant speed. Then, it solves the problem
of randomness by frequency domain sampling and implements
the RMPC along with the new sampling methodology. Second,
the proposed RMPC with frequency domain sampling is im-
plemented on GPU. In-order to transfer the algorithm to GPU,
each sample is processed by a different GPU thread at the same
time. With this higher computational power, RMPC can process
a larger number of samples or even consider a longer prediction
horizon in strict real-time limits. The presented idea of GPU
implementation eliminates the need for transferring large data
between GPU and CPU. This method also keeps the kernel
creation overhead to a minimum by not splitting the MPC into
subproblems. This solves the issues of time overheads that are
typically present in GPU based implementations [28]. Third, a
novel method of step-by-step parameter selection for RMPC is
suggested. Simulations and experiments demonstrate how this
new sampling method combined with the realization by GPU
improves the control performance. The validity of the proposed
ideas is demonstrated by using a 1:10 RC car that has the same
kinematics as a normal road car.

Attending existing bottlenecks faced by RMPC and demon-
strating its potential as a fast and easy-to-implement controller,
this work becomes promising for the future of autonomous
driving. Although our target is autonomous driving control, the
presented ideas of RMPC, frequency-domain sampling and GPU
implementation can be powerful tools for other applications,
particularly, fast real-time mechanical systems control.

II. PROBLEM SETTING

A. Task Description

In-order to demonstrate RMPC and its improvements, a colli-
sion avoidance task as shown in Fig. 1 is chosen. There is an ego
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Fig. 1. Target environment.

Fig. 2. Approximate bicycle model of the car.

car controlled by the controller following a pre-defined reference
path xref. The reference path, expressed in a local coordinate
frame attached to the car (Σl(t)) as seen in Fig. 2 is defined as
follows [29];

lχref(t) = {lpref,i(t)|i = 0, 1, . . . , Np} (1)

lpref,i(t) = {lxp
ref,i(t),

lypref,i(t)}. (2)

Here, lχref(t) is the reference path at time t, it contains Np path
nodes lpref,i(t), where lpref,i(t) denotes the relative position
of the path node, lxp

ref,i(t) and lypref,i(t), from the car’s origin.
Here the deviation of the car from the reference path, ye(t),
is computed as the distance from the car to Op(t), the origin
of the path coordinate frame Σp(t) at the time of t, which is
computed by applying the suitable interpolation between path
nodes. The car ideally should drive along the center-line of
this 6 m wide path. It starts at the point (dego

ref (t = 0), ye(t =

0), θe(t = 0)) = (0, 0, 0), which is the origin. Variable t is the
time index, dego

ref represents the distance covered by ego car along
the reference path and ye, θe represent lateral error and yaw error
of ego car from the reference path. The car should also make
necessary steering maneuver not to collide with the L parked
cars on both sides of the street whose position is represented by
(oiref, o

i
e), i ∈ {1, 2, . . . , L} for the ith parked car. The controller

controls the ego car motion by providing speed and steering
angle commands.

This problem setting is approached as a simultaneous motion
planning and control(SMPLC) Problem. The controller is an
MPC with the necessary constraints. Since SMPLC unifies the

TABLE I
DEFINITION OF PARAMETERS AND VARIABLES

planning and tracking into one problem considering the con-
straints and car dynamic model, there is no need to plan a path
first and then follow it for obstacle avoidance.

In order to represent the dynamics of the car, an equivalent
bicycle model Section II-B) is used. The previous works that
implemented MPC for navigation using GPU [25] have adopted
a point-mass model for simplifying the problem. Due to the
higher speed of motion, an equivalent bicycle model is of choice.
To keep a safe distance from the obstacles and the sidewalls, this
framework utilizes some input and safety constraints as shown
in Section II-C.

For reliable real-time performance, sample-based approach is
chosen to solve the nonlinear optimization problem. The sample-
based method used in this work is known as RMPC, and is
attracting increased attention recently.

Random sampling based methods often lead to random varia-
tions in the control input. This is not recommended for smooth-
ness critical tasks like driving. The author’s previous work [17]
indicates some preliminary results indicating a significant ad-
vantage of sampling from the frequency domain for smooth
driving control. In [17], an Inverse Discrete Cosine Transform
(IDCT) was used in the sample generation process from fre-
quency domain. We demonstrate the IDCT method being exe-
cuted in a GPU and driving our RC car smoothly.

B. State Space Equation for Car Dynamics

The vehicle behavior in this paper is assumed to be represented
by an approximate bicycle model with its coordinate system
along the reference path (Fig. 2). The state equation of this model
is expressed as follows [31].

[
˙lvY
ṙ

]
=

⎡
⎢⎣−

a11
lvX

a12
lvX

− lvX

− a21
lvXl

a22
lvX

⎤
⎥⎦
[
lvY
r

]
+

[
b1
b2

]
δ, (3)

where

a11 = (Cf + Cr)/m, a12 = −(lfCf − lrCr)/m,

a21 = (lfCf − lrCr)/Iz, a22 = −(l2fCf + l2rCr

)/
Iz,

b1 = Cfm, b2 = lfCf/Iz.

where lvX and lvY represents the longitudinal and the lateral
velocity in local coordinate frame, respectively. Please refer to
Table I for other variables. We further transform the nonlinear
state equation that is given above into an approximate bicycle
model with it’s coordinate system along the reference path.
With the assumption of vehicle speed V being constant within
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prediction horizon, the slip angle of the vehicle β and θe to be
small enough, the dynamics of the lateral tracking error ye and
the angle θe are summarized as follows (discretized with Euler’s
Method):

x(k+1) = Ad(k)x(k) +Bd(k)ut(k) +Wd(k)ρ(k), (4)

y(k) = Cx(k), (5)

x(k) =
[
ye(k) ẏe(k) θe(k) θ̇e(k) δ(k)

]T
(6)

ut(k) = δ∗(k) (7)

Ad(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 Δt 0 0 0

0 1− a11

V (k)Δt a11Δt a12

V (k)Δt b1Δt

0 0 1 Δt 0

0 − a21

V (k)Δt a21Δt 1+ a22

V (k)Δt b2

0 0 0 0 1−αΔt

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

Bd(k) =
[
0 0 0 0 Δt

]T
(9)

Wd(k) =
[
0 (a12 − V 2(k))Δt 0 a22Δt 0

]T
(10)

C =

[
1 0 0 0 0

0 0 1 0 0

]
. (11)

Where ρ represents the curvature of the reference path at the
nearest point and δ∗ represents the tire angle reference. Actual
tire angle δ is considered to have a first order delay from δ∗ to
represent physical delay in steering system. Readers are referred
to our previous work [29] for further details.

C. Input and Safety Constraints

There are two constraints in this formulation, one is the hard
constraint to ensure feasible input commands and the other one
is to prevent entry into the prohibited area.

The range of control input ut and its rate of change Δut are
constrained as follows to maintain physical limits of steering
system and to prevent urgent steering action, respectively.

| ut | < 0.1745 (≈ 10 [degrees]) (12)

| Δut | < 0.35 radians/sec (≈ 20 [degrees/sec]) (13)

For each parked car, an ellipse around them defines the prohib-
ited area with a safety margin. This area for ith parked car is
expressed by an inequality(

dego
ref (t)− oiref

ria

)2

+

(
ye(t)− oie

rib

)2

> 1

∀i ∈ {1, 2, . . . , L} (14)

where L is the number of cars parked, (oiref, o
i
e) is the position

of i th parked car. The length of the major and minor axis of the
ellipse around ith parked car are ria and rib, respectively.

The areas beyond sidewalls are also expressed as prohibited
areas represented with a logarithmic function as explained in the
next subsection (19).

D. Cost Function and Reference State

The goal of the controller is to drive the car on the center of the
street, without colliding with the obstacles. On taking a closer
look at the given case, it can be seen that the need to follow
the street center and to stay away from obstacles are obviously
conflicting. While avoiding obstacles, it is also important to keep
a safe distance from them, than following the closest path to
the obstacle. This is satisfied by adding a potential field term
in the cost function. There are weight parameters to balance
between terms to stick to the reference path and terms to avoid
a collision. Finally, another potential field is also added to keep
a safe distance from the side walls.

The cost function J(ut) for an input series ut =
[u(0|t), u(1|t), . . . , u(N − 1|t)] to be optimized at time t is

J(ut)=

N−1∑
k=1

s0(k|t)
(
φT (k|t)Qφ(k|t) + Δu(k|t)TRΔu(k|t))

+ φT (N |t)Qfφ(N |t) +Qobs

N−1∑
k=1

sjP
j
obs(k|t)

+Qwall

N∑
k=1

Pwall(k|t) (15)

where φ(k|t) = y(k|t), (16)

Δu(0|t) = 0, Δu(k|t) = |u(k|t)− u(k − 1|t)|1
∀k ∈ {1, 2, . . . , N − 1}, (17)

where N , φ and Δu represents prediction horizon length of
MPC, state error and the time difference in control input, respec-
tively. The representation u(k|t) is the value of u at prediction
horizon step k at time t. Q = diag(Qye

, Qθe) and R being
weight parameters, balance the control performance to the effort.
Qf acts on the last step in the prediction horizon as a penalty to
the residue.

This framework enables us to follow any reference path xref

that we need, the reader can refer to our previous work [29]
for a detailed study on the path tracking performance of this
dynamic model. Further details on the weight parameter matrices
and the terms si(k|t), s0(k|t) can be found in author’s previous
work [17]. When the ego car approaches a parked car i, the
switching parameter si approaches to 1. This makes the repulsive
force more significant. Otherwise, following the reference state
is of higher priority.
Qobs and Qwall works as weight parameters for the potential

field around parked cars and sidewalls. Potential function around
jth parked car is expressed by P j

obj :

P j
obj(k|t)=C exp

(
−
(
dego

ref (k|t)−ojref

rja

)2

−
(
ye(k|t)−oje

rjb

)2)

(18)

where [dego
ref (k|t), ye(k|t)] are the ego car position along refer-

ence path predicted for prediction horizon step k at time t. C, ria
and rib can adjust potential field area and magnitude. Side walls
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Fig. 3. Potential field of sidewalls.

have their own potential field Pwall:

Pwall(k|t) = (log |ywl|+ log |ywr|)− (log(ywl − ye(k|t)
+ log(ye(k|t)− ywr)) (19)

where ywl = 3, ywr = −3 are side wall locations. Pwall is de-
signed to increase steeply close to the walls, as shown in Fig. 3.

E. Formulation of Input Optimization Problem

The optimization problem to be solved in every control step in
order to generate optimum control input series can be formulated
as follows:
given

x(0|t) = x(t), xref, (20)

find

u(k|t), (k ∈ {0, 1, . . . , N − 1}) (21)

which minimize

J(ut = {u(k|t)}), (k ∈ {0, 1, 2, . . . , N − 1}) (22)

subject to

Input constraints (12), (13)

Prohibited area constraint (14), (19)

Car dynamics (4). (23)

III. SEMI OPTIMAL SOLUTION USING SAMPLING IN

FREQUENCY DOMAIN

The problem in consideration is a non-linear optimization
problem and it has to be solved in real-time. There are non-linear
constraints associated with safe driving and a non-linear vehicle
model. Typical methods to find the solution is approximating
the non-linear constraints in some way for the solvers [23]. This
paper tries to eliminate these approximations by the application
of a random sample based approach. This method is proven to
provide a semi optimal solution which is close enough to the op-
timal solution, once the necessary sample size is considered [7].
The process of this method of optimization starts with sample
generation.Ns number of sample sequences that are of the length
N is picked from a specific distribution of random numbers. The
next step is to calculate the future trajectory for the car, assuming
it follows each of these sample sequences. At this point, some
constraint based filtering is performed to remove the samples
that are infeasible. In the case if majority of the samples are
found to be infeasible, there is threat on safety. In such a case,
the controller should switch to a mode of emergency stop or
request manual driving. This follows the calculation of the cost

associated with each sample according to a cost function. The
minimum cost series is then identified and it’s first element goes
as the input to the ego car. The controller repeats these steps for
each control cycle.

A. Sampling in the Frequency Domain for Smoother
Input Samples

Generating samples randomly is expected to carry the ran-
domness into the control input as well. Since given control
input is the steering command to the car, this randomness is not
recommended for smooth driving performance. The suggested
sampling method generates the samples from the frequency
domain. These are then converted into the time domain using the
process of Inverse Discrete Cosine Transform(IDCT). Following
this process, it is possible to obtain smoother samples that drives
the car smoother.

The following set of equations explains the process of sample
generation in detail.

ui
IDCT (0|t) = u(t− 1) (24)

ui
IDCT (k|t) = ui

IDCT (k−1|t) + Δui
IDCT (k|t),

∀k ∈ {1, . . . , N} (25)

Δui
IDCT (t)

T = γDU i
IDCT (t)

T (26)

U i
IDCT (l|t)

{
∼ U(−1, 1) if l ≤ Fc/o

= 0 other.
(27)

Here,D ∈ RN×N is the coefficient of IDCT and l is the index
representing the frequency component. Each element of D is
calculated as follows:

Dij =

√
2

N
ki cos

(
(i− 1)(j − 1/2)π

N

)
,

i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N} (28)

where N is the length of input series. ki (i = 1, 2, . . ., N) is a
normalizing factor that has two values

ki =

⎧⎨
⎩

1√
2
i = 1

1 i 	= 1

⎫⎬
⎭ . (29)

U i
IDCT (t) is sampled from a uniform distribution ranging

(−1,1) in this case. γ is a parameter that can be used to adjust
the resulting input rate of change according to (13). Fc/o is a
cut-off threshold that prevents higher frequency components in
the resulting input sequence. The smaller the Fc/o the smoother
in the resulting input series. Unless specified, an Fc/o of 15 is
used in this paper. If any of the element ut generated in (25) is
found to violate the constraint (12), a new random number is
generated to replace the U i

IDCT (l|t) until ut satisfies (12). The
control performance with and without IDCT can be seen in Fig. 4
(Ns = 500). The graphs show visible improvement in control
signal smoothness and steering performance. In summary, the
contents of IDCT is essentially random number generation fol-
lowed by some matrix multiplications and series making. The
following sections will demonstrate how the above-mentioned
operations were efficiently ported to GPU.
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Fig. 4. Control performance with and without IDCT.

B. Validation of Proposed Sampling Method

Before using RMPC for real experiments, its performance
is evaluated in simulation-based experiments. Since the ex-
periments are performed in a 1:10 scale car, a high fidelity
car simulator is necessary for simulations. Carsim by Virtual
Mechanics Inc. is used owing to its excellent vehicle and en-
vironment models. The controller issues an updated control
input in every control cycle. In the simulation experiments, the
control interval dT is set as 0.1 seconds. The prediction horizon
length is set asN = 50. This means that the controller calculates
the optimal input considering vehicle behavior predictions of 5
seconds into the future. The following combination of parame-
ters resulted in the best possible tracking performance. Qf = 1,
Q = diag(10, 10), R = 3000, Qobs = 3000 and Qwall = 5, re-
spectively. The parameter γ is set to 1. The parked cars are at the
positions o1 = (50, 0.85) and o2 = (80,−0.85), respectively.
Since the optimization is based on random samples, there is
an obvious question of its closeness to the global optimum.
There have been some previous works [7] that quantifies the
minimum sample size for the solution to be global with a defined
probability level. Referring to [7], it is calculated that a sample
size ofNs > 458 is necessary for the solution to have confidence
level of99%(αbelieve = 0.01). Hence, the controller is tested at a
sample size of Ns = 500. Fig. 5 demonstrates the performance.
Tracking performance is very accurate without any intrusion
to the obstacle area which is prohibited. While the author’s
previous works [17] were limited to the performance of the
controller at sample sizes less than 500, this paper tries to go
beyond this number. Even though Ns = 500 is sufficient for
satisfiable performance at the simulation conditions, sample
sizes beyond 500 are found to provide better controller per-
formance as shown in Fig. 5. The majority of control tasks
have multiple control variables and stricter constraints. Such
cases would clearly demand a higher number of samples to be
processed in real-time. Another interesting trend in the case of
driving is related to driving speed. The faster the car is, the
shorter the control interval has to be. Both these conditions
demand higher computational performance. But due to hardware

Fig. 5. Number of samples and controller performance.

TABLE II
STEPS IN COMPUTATION

limits, the sample size Ns < 500 was the limit that a CPU based
implementation could process in real-time. This limitation in
computation power was also expressed in [17] and [23].

IV. IMPLEMENTATION USING GPU

A. Computational Steps Involved

The process of calculating the optimum control input can be
expressed in a sequence of 6 steps as described by Table II.
Once the present state variables are obtained from the car, the
controller performs steps 1 to 6. The final step does a mini-
mization of all the samples based on a cost function and comes
up with the best sample sequence. The second element in this
sequence will be the optimum input for the car in the next step.
This will be then sent to the car. This process is repeated in
every control cycle. The following subsections are dedicated to
the detailed contents of these steps and the methods in moving
them to support parallel computation using GPU.

B. CPU Baseline

In order to have a better understanding about the improve-
ments by parallel computing, The controller was first imple-
mented using a CPU based algorithm. The steps are expressed
in Algorithm 1. The CPU used in this study is a 2.2 GHz Intel
Core i5. CPU program uses a random device function of the
C++ Numerics library [32] to generate random numbers. Please
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Fig. 6. CPU vs GPU architecture.

Algorithm 1: Randomized MPC.
1: for Every time step do
2: Generate Ns input samples of length N acc. to 2.
3: Initialize state matrix.
4: for Sample = 1, 2, . . . , Ns do
5: for Length = 1, 2, . . . , N do
6: Calculate the extended state matrix acc. to 1.
7: end for
8: end for
9: for Sample = 1, 2, . . . , Ns do

10: for Length = 1, 2, . . . , N do
11: Calculate the cost for each sample acc. to 3.
12: end for
13: end for
14: Find minimum cost sample Smin.
15: Return second element of Smin as next control

input.
16: end for

note that the steps from 2 to 5 in Table II are performed on every
element, one element at a time using two ‘for loops’. First one
is a ‘for loop’ that index the sample number Ns, the second one
for the length of the sample N . This makes up Ns×N calls to
the CPU one after the other.

C. Code Design for GPU

The various steps involved in the MPC algorithm were divided
into 6 discrete steps as seen in Table II. These steps were studied
in detail to find possible improvements by porting to a 2560
core GPU (NVidia GeForce GTX1080 1.7 GHz). The basic
difference in hardware of CPUs and GPUs are as visualized
in Fig. 6 [34]. While a normal CPU has several fast ALUs
(Arithmetic Logic Units) sharing common cache memory and
controlled by a common controller, GPUs have thousands of
ALUs with individual controller and cache memory. Since all of
the ALUs in a GPU can run a thread of operation in parallel, the
basic idea of implementation is to assign a sample point to each
GPU thread, as shown in in illustrative picture Fig. 7. Random
samples are stored in an array of size Ns ×N , same number of
GPU threads are also assigned as a block of size Ns ×N .

The first step of random number generation is performed
with Pseudo-random number generation function in CURAND
library [33], which is a part of NVidia’s CUDA library [34].
Step 2 that performs the IDCT operation (As seen in (22)) and
Step 5 that calculates cost (As seen in (10)), are independent

Fig. 7. GPU implementation image.

at each discrete sample points. Being independent, they can
use as many GPU threads as the hardware allows simultane-
ous operation. Matrix multiplication operations associated with
Step 2 can also use the maximum possible capacity of GPU.
These steps while using one sample point per GPU thread gives
Ns ×N times faster computation. The remaining steps in the
computation like Steps 3 and 4 depend on previous prediction
horizon/series value to compute next. These steps have to be
performed in N steps, calculating all Ns samples at a given
time using Ns number of threads. Even here we get Ns times
improvement in computational time over CPU.

As described in the survey paper [28], the majority of GPU
based implementations are faster in calculation but suffer from a
high overhead of memory transfer time and kernel creation time.
The GPU implementation presented here avoid these problems
in following ways:
� By generating the random numbers within the GPU mem-

ory (step 1 in table II), all the steps of computation are kept
within the GPU and its memory. Only the present state of
the car is transferred to GPU and the optimum input is sent
back.

� Certain problem-parallel approaches in literature splits
the MPC to smaller problems by dividing the prediction
horizon and assign each section to different GPU kernels.
Thanks to the random sample based method, our data-
parallel approach does not split the MPC into subproblems,
limiting the kernel creation time to the minimum.

V. EVALUATION USING RC CAR

Using GPU, we expect to produce the same quality control
signals as that of CPU with significantly lower computation time.
In the context of controlling a car, this can give multiple benefits.
Previous works based on simulations did not consider the delays
caused by localization, error estimation and communication
delay. Model errors and various other noises were also ignored
by relying solely on simulations. Hence, extensive experiments
are conducted using an RC car to demonstrate the controller
under an environment closer to real situation.

A. Experiment Setup

The RC car used is a Tamiya 1:10 scale car as shown in Fig. 8.
The car has a ‘Raspberry Pi’ computer on-board receiving the
control PWM signals from the control PC via Wi-Fi. A ROS
framework is used for communication. The position of the car
is captured in realtime using a camera-based motion capture
system called ‘Motive’. The motion capture system runs at
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Fig. 8. 1:10 RC car with control board and markers for motion capture.

Fig. 9. Speed limit comparison.

200 Hz frequency which is more than the maximum control
frequency. The prediction horizon length N is chosen to be 30
(to predict 3 metres ahead).

B. Advantages of Higher Control Frequency

One of the advantages of faster computation using GPU is to
run the controller at a higher frequency. This enables the obstacle
avoidance possible at higher speeds than the CPU. Under the
condition of N = 30, and minimum Ns of 500, the maximum
control frequency using CPU is 30 Hz. This controller is found
to work fine at a speed of 3.6 km/h.1 But, the CPU based system
is found to collide with the obstacles at a speed of 5.1 km/h.
This is due to the fact that CPU based implementation cannot
run at a higher control frequency. GPU was able to run at 200 Hz
with 1000 samples, The GPU performs smooth avoidance until
11.5 km/h. The details of the experiment is shown in Fig. 9 and
the video [35].

C. Advantages of Higher Sample Sizes

Another advantage of using the higher computation speed
is the capability of considering more samples at every control
interval. As discussed earlier in Section III-B, a higher sample
number is expected to bring the solutions closer to the global
optimum. In the RC car based tests, the control frequency is set
to be 100 Hz and the number of samples were increased. The
results are indicated in Table III and Fig. 10. At 100 Hz, CPU can

1In a real car, this correspond to 3.6× 10 = 36 km/h [36].

TABLE III
COST FUNCTION AT DIFFERENT SAMPLE SIZES

Fig. 10. Sample size comparison.

Fig. 11. Controller performance for different prediction horizon lengths.

process only 100 samples in real-time. Using a higher number of
samples in real-time, the GPU based controller can have lower
cost values. Even though the reduction in cost value is low at
higher sample sizes, the car behavior is visibly smoother and
maintains better safety distance while driving.

VI. DISCUSSION ON PARAMETER SELECTION FOR RMPC

RMPC controllers are characterized by the samples used
and the frequency at which they are updated. The samples are
characterized by the number of samples Ns and length of each
sampleN . Let us denote the control interval as dT . The selection
of these parameters is not as easy as it seems due to their
relationship with each other. Increasing Ns or N forces dT
to increase. For a fixed N , there could be multiple combinations
of Ns and dT that satisfy computational limits.

The recommended procedure to identify these parameters
starts with the identification of N . N is decided first because
of it’s unique effect on control behavior. Value of N has to be
bounded with both upper and lower limits as seen in Fig. 11. On
the other hand, acceptable values of Ns and dT could only be
bounded on one side, minimum Ns and maximum dT .

N can be identified with a few experiments as demonstrated in
Fig. 11. We choose the values for Ns and dT intuitively for this
step. It can be seen that the RC car, while performing the obstacle
avoidance task as explained in Section V, has an optimal range
of prediction horizon length N for best tracking performance.
Here, the best N value was found to be 30 steps.

Once we identify the value ofN , it is recommended to choose
the optimal dT corresponding to the speed of the system. Rule of
thumb is that a car moving at double speed will cover double the
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Fig. 12. Tracking a curved path with speed control.

distance in the given time. Hence control frequency should also
be doubled. It is always recommended to have some tolerance in
the dT value considering the computational time slightly varies
depending on situation.

After choosing the N and dT , it is recommended that the
maximum sample number is chosen considering given compu-
tational resources. This is because the cost function is found
to decrease monotonously as the sample size increases as seen
in Table III. This method of selection was employed during
parameter selection for the RC car experiments and simulations
presented in this work.

VII. EXTENSION TO COOPERATION WITH SPEED CONTROL ON

CURVY ROADS

The simulations and experiments discussed until Section VI
deal with a constant speed obstacle avoidance task on a straight
road. Such a task is found to be the best choice to highlight the
effects of various control parameters and computational speed
on the proposed RMPC controller.

This controller works equally well in any kind of road, even
with those having tight turns. Fig. 12 demonstrates the ego car
maneuvering a tight turn and facing a parked car at the exit of the
curve. The control parameters are chosen to match with Section
III-B. The ego car is observed to perform smooth collision
avoidance.

The constant speed assumption is replaced with the addition of
a speed controller that slows the car down when higher steering

angles are commanded. The input vector (7) becomes

ut(k) = [δ∗(k), v(k)]T (30)

Where,

v(k) = Cf (vavg(k)), vavg(k) =
1

n

n∑
i=1

v(k − i).

Cf is a cubic function of vavg and n = 10. The speed profile
during the collision avoidance is seen to be smooth in Fig. 12.
The proposed lateral controller being independent, speed control
can be easily replaced with any other type of controller.

VIII. CONCLUSION

This paper has presented a randomized nonlinear model pre-
dictive controller for autonomous driving while giving special
emphasis to obstacle avoidance task. Although the vehicle model
and the obstacle constraints have nonlinearity in their nature, the
proposed scheme enabled direct consideration of nonlinear con-
straints by using a randomized optimization method. Random
samples for optimization were generated from the frequency
domain using IDCT method. This prevents undesirable oscilla-
tion in the control input, which is particularly important in the
autonomous driving. This paper also investigated the impact
of using GPU for implementation of randomized MPC. By
using GPU, the real-time performance limit was extended. A
parameter selection methodology for randomized MPC has also
been discussed. The proposed scheme and improvements were
confirmed in simulation and experiments using an RC-car. The
RC-car experiment has realized higher driving speeds and shown
better control performance compared with CPU based controller.
Our proposed implementation scheme for GPU is available for
other types of control systems which are in need of high control
performance under nonlinear constraints.
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