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Constraint-Based Prioritized Trajectory Planning
for Multibody Systems

Yuichi Tazaki and Tatsuya Suzuki

Abstract—This paper presents a trajectory-planning method for multi-
body systems. Trajectory planning of a multibody system is formulated as
a constraint-solving problem on a set of variables expressing the motion of
the multibody system over a finite-time interval. Constraints express the
dynamics of rigid bodies, kinematic conditions of joints, various range lim-
itations, as well as achievement of tasks, and they can be assigned different
priority levels. The prioritized constraint-solving problem is then treated
under the framework of lexicographical goal programming, where the lo-
cal optimality of the problem is characterized in terms of Pareto efficiency
condition. Based on this observation, an algorithm that iteratively updates
the variables toward a locally optimal solution is derived. The proposed
method is evaluated in simulation examples.

Index Terms—Constraint solving, multibody systems, priority, trajec-
tory planning.
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I. INTRODUCTION

Trajectory planning of robotic systems with many degrees of free-
dom poses some technical challenges. First, one must find a trajectory
that achieves given tasks, while fulfilling kinematic and physical con-
straints in a high-dimensional state space. Trajectory planning is often
treated as an optimization problem (see [1]–[7]). Here, a set of phys-
ical variables that express a robotic trajectory is optimized to fulfill a
series of constraints that originates from law of physics and various
kinematic relationships between objects. A wide range of optimization
techniques have been investigated, including the Newton method [3],
the shooting method [2], [4], the covariance matrix adaptation [5], and
the SQP [7].

The second difficulty is the multiobjective nature that most real-
world trajectory planning problems possess. The task-space control
framework is capable of handling different priorities of tasks (see [8]–
[13]). In this framework, a unique local coordinate frame called a task
space is defined for each task and tasks with lower priorities are treated
in the null-space of the task spaces of those with higher priorities.
This framework is extended to inequality tasks in [14]. Although it is
quite useful for synthesizing a set of feedback controllers with multiple
priority levels, it is not directly applicable to trajectory planning. When
one considers trajectory planning, task priorities should be considered
in the space of state trajectories rather than in the space of states.
However, trajectory planning is a nonlinear problem in much higher
dimension space. This makes some computational techniques that have
been used in task-space control not directly applicable. These include
the computation of the pseudoinverse matrix of constraint Jacobian (see
[8]), the computation of the basis of constraint null-space using singular
value decomposition (see [12]), and sequence of quadratic programs
(see [14]).

Based on the above background, this paper proposes a trajectory
planning method for robotic systems that are represented as multibody
systems. The multibody representation enables the expression robots
with various morphologies and workspaces with different settings in a
uniform manner. A trajectory-planning problem of a multibody system
is formulated as a constraint satisfaction problem with multiple prior-
ity levels, in which the kinematics and the dynamics of the multibody
system, as well as the achievement of tasks are expressed as a set of con-
straint conditions. It is shown that the problem can be viewed as a class
of goal programming problem (see [18]) and its local optimality condi-
tion is given as a special form of Pareto-efficiency condition. Based on
this observation, an algorithm that iteratively updates a set of decision
variables toward a prioritized Pareto-efficient point is proposed. The
proposed algorithm requires no expensive computation other than the
solution of quadratic programs, and therefore, it is suitable for trajec-
tory planning of robotic systems with many degrees of freedom. The
basic concept of the proposed method has been presented in the authors’
previous publications (see [16] and [17]). In this paper, the theoreti-
cal foundation of the proposed method is strengthened by revealing
the connection between lexicographical optimality and a special type
of Pareto-efficiency (see Section II). The formulation of multibody
trajectory planning is presented considering both sparse and dense
parameterizations (see Section III). Moreover, the computational
performance of the proposed method is compared with conven-
tional multiobjective optimization problems that are computed by a
generic solver (see Section IV). Concluding remarks are made in
Section V.

Notation: A sequence of integers from i1 , i1 + 1, . . . , i2 is written
as [i1 : i2 ]. Moreover, the vertical concatenation of vectors, [vT

1 vT
2 ]T is

written as [v1 ; v2 ]. For a vector c and an index set I, cI denotes the
subvector of c with the components indexed by I.

1552-3098 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



1228 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014

II. CONSTRAINT ERROR MINIMIZATION PROBLEM

BASED ON GOAL PROGRAMMING

A. Constraint-Error Minimization and Goal Programming

The trajectory-planning problem takes the form of a constraint sat-
isfaction problem for a set of physical variables that constitute a multi-
body system. Constraints that express the kinematics and the dynamics
of the system are equality constraints, while constraints that express
collision avoidance and movable ranges are in inequalities. Let us de-
fine the decision variable vector z ∈ Rn z as the concatenation of all
variables that are involved in a trajectory-planning problem. Moreover,
let all constraints aggregate into the following form:

cl ≤ c(z) ≤ cu . (1)

Here, c : Rn z �→ Rn c , and nc denotes the number of constraints. The
constraint function c(z) must be C1 continuous, since the algorithm
presented later makes use of the Jacobian matrix of c(z). Moreover,
cl and cu denote the lower and upper bounds on c(z). Setting cl

i = cu
i

imposes an equality constraint on the ith component of c(z). The ith
component is active, if either ci (z) ≤ cl

i or ci (z) ≥ cu
i holds.

There may be an overconstrained situation, in which not all con-
straints are simultaneously satisfiable. In such a case, one should in-
troduce priorities into constraints; constraints with higher priorities
are strictly fulfilled, while the errors of lower priority constraints are
minimized using the remaining degrees of freedom. High-priority con-
straints typically include the kinematics and dynamics constraints,
which are critical to the realizability of the trajectories, and lower
priority constraints are task constraints. Needless to say, tasks may
have different priority levels as well.

Goal programming (GP) is one of the frameworks in the multiob-
jective programming literature that can handle multiple objectives with
different priorities (see [18]). Among several formulations that have
been investigated in the context of GP, the weighted goal programming
(WGP) and the lexicographical goal programming (LGP) are particu-
larly well known. WGP, as its name suggests, minimizes the weighted
sum of the objective functions

min
z

L∑

l=0

wl φl (z). (2)

Here, φl (z) (l ∈ [0 : L]) are the objective functions that return nonneg-
ative scalar values, and wl > 0 are the weighting coefficients. Objective
functions with larger weights are selectively reduced; therefore, prior-
ities can be indirectly reflected in the combination of weights. As the
number of objective functions increases, however, the weight adjust-
ment to realize an intended balance in the objective values becomes
increasingly difficult.

On the other hand, LGP is formulated as follows:

φ∗0 = min
z

φ0 (z),

φ∗1 = min
z

φ1 (z) subject to φ0 (z) = φ∗0 ,

...

φ∗L = min
z

φL (z) sub.to φl (z) = φ∗l ∀l ∈ [0 : L − 1]. (3)

In LGP, l ∈ [0 : L] represents the priority of objective functions. The
objective function φ0 has the highest priority, while φL has the low-
est (be aware that smaller l indicates higher priority). First, φ0 (z) is
minimized and its minimum value is denoted by φ∗0 . Next, φ1 (z) is
minimized subject to the constraint that the minimum value of φ0 (z)

is maintained. More generally, the lth objective function is minimized
subject to the constraint that all the previously minimized objective
values are maintained. LGP has an important property that higher pri-
ority objectives are unaffected by the lower ones; that is, the minimum
objective value is determined regardless of whether the lower priority
objectives exist or not. This is a great advantage over WGP, which
requires the try-and-error procedure for weight tuning.

Consider solving the above LGP-type problem by an iterative pro-
cedure. Let Dlex (z) denote the set of admissible update directions at
the point z, defined as follows:

Dlex 〈φ0 , φ1 , . . . , φL 〉(z) = { δz |

(δφ0 < 0) or

(δφ0 = 0 and δφ1 < 0) or . . . or

(δφl = 0 ∀l ∈ [0 : L − 1] and δφL < 0)}. (4)

Here, δφl = (∂φl/∂z)(z) δz. An admissible update direction of LGP
is a direction that reduces the objective value of a certain priority level
l without increasing the objective values of priority levels higher than
l.

B. Priority Handling Based on Pareto Efficiency

Based on the discussion in the previous section, the idea of pri-
oritization is incorporated into the constraint satisfaction problem.
For preparation, the constraint conditions are split into L + 1 groups
with the priority levels 0 to L. Let Il be the index set of constraint
components with the priority level l. For later use, we also define
I[0 :l ] = I0 ∪ I1 ∪ . . . ∪ Il . The subvector of c(z) with all components
with the priority l is written as cIl (z), and the subvector with all compo-
nents whose priority is higher than or equal to l is written as cI[ 0 : l ] (z).
Moreover, let us define a constraint error function e(z) whose compo-
nents are given by

ei (z) =

⎧
⎪⎨

⎪⎩

ci (z)− cu
i , ci (z) > cu

i ,

cl
i − ci (z), ci (z) < cl

i ,

0, otherwise.

(5)

Furthermore, let J(z) be the Jacobian matrix of c(z) with respect to z;
J(z) = ∂

∂ z
c(z).

A natural way to formulate a problem in the form of LGP would
be to define a scalar function for each l, say φl (z), such that cl

Il ≤
cIl (z) ≤ cu

Il ⇔ φl (z) = 0. A typical example of such a function is
φl (z) = ‖eIl (z)‖2 , in which case the sum of squares of constraint
errors is minimized for each priority level. In this manner, however,
one may observe some irregularity in the decrease of the components
of c(z), unless each component is properly normalized to have ap-
proximately the same range of values. Such preconditioning becomes
difficult when there are hundreds of constraints. To avoid this situation,
this paper introduces a modified formulation of LGP which is based on
Pareto efficiency. Now, the Pareto efficiency in this context is defined
as follows:

Definition 1: For a vector-valued function e : Rn �→ Rm and a
point z ∈ Rn , a direction δz satisfying the following condition is called
a Pareto direction:

(∃i ∈ [1 : m] s.t. δei < 0) and (δei ≤ 0 ∀i ∈ [1 : m]) (6)

where δei = (∂ei/∂z)δz. The set of Pareto directions at z is denoted
by Dpar〈e〉(z). Moreover, when Dpar〈e〉(z) is empty, z is said to be
Pareto efficient with respect to e(z).
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Intuitively, a Pareto direction is a direction in which some compo-
nents of e(z) can be reduced without increasing the other components.
If such a direction does not exist, then z is Pareto efficient.

Now, let us focus again on (4). The following lemma states that
Dlex (z) is given by the union of multiple Pareto direction sets.

Lemma 1: The following relation holds:

Dlex 〈φ0 , φ1 , . . . , φL 〉(z) ≡

Dpar〈φ0 〉(z) ∪ Dpar〈[φ0 ; φ1 ]〉(z) ∪ . . .

∪ Dpar〈[φ0 ; φ1 ; . . . ; φL ]〉(z). (7)

Here, [φ0 ; φ1 ; . . . ; φl ](z) is a function that returns [φ0 (z);
φ1 (z); . . . ; φl (z)].

Proof: See Appendix A.
Using the above relation, one can write the local optimality condi-

tion of LGP in terms of Pareto efficiency; that is, a point satisfying
Dlex (z) = ∅ is Pareto efficient with respect to φ0 , [φ0 ; φ1 ], . . ., and
[φ0 ; φ1 ; . . . ; φL ]. Based on this observation, we now introduce a new
set of directions by replacing the scalar function φl in the right-hand
side of (7) with the vector-valued function eIl .

Definition 2: A prioritized Pareto direction is a set given as follows:

Dlex−par〈e〉(z)

= Dpar〈eI0 〉(z) ∪ Dpar〈eI[ 0 : 1 ] 〉(z) ∪ . . . ∪ Dpar〈e〉(z). (8)

Moreover, a point z satisfying Dlex−par〈e〉(z) = ∅ is called a priori-
tized Pareto-efficient point.

For convenience, let us call the problem of finding a prioritized
Pareto efficient point P-LGP (P is for Pareto). It should be noted that P-
LGP is not equivalent to the conventional LGP with φl = ‖eIl ‖2 , since
(8) is derived by replacing φl in (7) with eIl symbolically. Nevertheless,
P-LGP has a useful property that its solution set is invariant under
constraint scaling. That is, if Dlex−par〈e〉(z) = ∅ for some z, then
Dlex−par〈Γe〉(z) = ∅, where Γ is an arbitrary positive diagonal matrix.
This property is indeed useful since one does not need to be concerned
about the scaling of constraint function c(z) affecting the solution set.

Remark 1: Scaling of variables and constraints is still important,
since it affects the convergence speed of the iterative algorithm pre-
sented in the next section. Moreover, the solution of P-LGP is gen-
erally not unique. Therefore, even though the whole solution set is
scaling-invariant, a solution that is produced by the algorithm may be
scaling-dependent.

C. Algorithm for Finding Prioritized Pareto Efficient Solution

This section presents an iterative method that finds a prioritized
Pareto-efficient point. The algorithm repeatedly updates the variable z
in a direction given by δz, a prioritized Pareto direction. Algorithm 1
shows the procedures of the algorithm. At each iteration, l is varied
from L down to 0 and a Pareto direction with respect to eI[ 0 : l ] is
computed for each l. The procedure QP(l, z) computes the following
quadratic program to obtain a Pareto direction:

min. ‖Γz δz‖2 + ‖Γe (δe + γe(z))‖2

subject to Ji (z) δz ≤ δei , δei ≤ 0 ∀i ∈ I+
[0:l ]

−Ji (z) δz ≤ δei , δei ≤ 0 ∀i ∈ I−[0 :l ] . (9)

The decision variables of QP(l, z) are δz and δe, where δz denotes the
direction of change of z and δe denotes that of constraint errors. Here,
δe must be a variable because the definition of the Pareto direction
requires that at least one component of δe must be strictly negative, but

which component will be strictly negative is not known in advance. The
matrices Γz and Γe are scaling matrices for δz and δe, respectively,
given by positive diagonal matrices. The constant γ > 0 is the desired
error correction rate. The symbols I+

[0:l ] (I−[0 :l ] ) denote the index set

of constraints that satisfies ci (z) ≥ cu
i (ci (z) ≤ cl

i ) and has priority
levels between 0 and l. Note that the components of δe that are not
included in eitherI+

[0:l ] orI−[0 :l ] are actually not involved in the quadratic
program; these are included in the decision variables solely for brevity
of notation. The following lemma guarantees that QP(l, z) outputs a
Pareto direction if one exists.

Lemma 2: IfDpar〈eI[ 0 : l ] 〉(z) is not empty, then the optimal solution
(δz∗, δe∗) of QP(l, z) satisfies δz∗ ∈ Dpar〈eI[ 0 : l ] 〉(z). Otherwise, the
optimal solution is (δz∗, δe∗) = (0, 0).

Proof: See Appendix B.
The quadratic program (9) can be computed by a generic QP solver.

In this paper, it is first transformed into an equivalent linear com-
plementarity problem (see [21]) and then computed by the projected
Gauss–Seidel algorithm. In this manner, the sparsity of the problem
can be fully exploited.

After a Pareto direction is computed, a line search is performed by
the procedure LINESEARCH to determine the best step size α. Like con-
ventional gradient-based optimization methods, the proposed method
can benefit from line search for speeding up the convergence of it-
eration and for reducing oscillatory behavior at near-singular points.
Suppose δz ∈ Dpar〈eI[ 0 : l ] 〉(z) is obtained at some point of iteration.
Then, the step size α is obtained by solving the following constrained
scalar minimization problem:

min. ‖eI[ 0 : l ] (z + α δz)‖2

subject to eI[ 0 : l ] (z + αδz) ≤ eI[ 0 : l ] (z). (10)

This problem can be computed by a method similar to the well-known
golden section search. The obtained α is then clipped to the range
αm in ≤ α ≤ αm ax . The minimum step size αm in must take some pos-
itive value. Otherwise, α will be 0 when some nonlinear equality con-
straints are strictly satisfied at z, and as a result, iteration will terminate
even if z is not a stationary point.

Remark 2: The scaling matrices Γz and Γe strongly influence the
convergence speed of the projected Gauss–Seidel algorithm. One sim-
ple yet effective way is to set them in such a way that each variable (con-
straint) component after scaling becomes physically undimensioned.
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TABLE I
TRAJECTORIES OF MULTIBODY SYSTEM

i) Variables of ith rigid body ii) Variables of j th joint

pi , k ∈ R3 position of θj , k ∈ R joint angle
center of mass

qi , k ∈ Q orientation νj , k ∈ R joint velocity
vi , k ∈ R3 velocity of τ j , k ∈ R joint torque

center of mass
ωi , k ∈ R3 angular velocity f j , k ∈ R3 joint force

nj , k ∈ R3 joint moment

First, the characteristic constants of the fundamental physical dimen-
sions, position, mass, and time, are determined based on the approxi-
mate size and the mass of the robot and the workspace, and the time
resolution h. Then, for a velocity variable, for example, the scaling
coefficient is given by (L/T )−1 , where L and T are the characteristic
constants of position and time, respectively.

III. MULTIBODY SCENE AND TASK REPRESENTATION

A. Overview

The prioritized constraint satisfaction algorithm that is presented
in the previous section is applied to the trajectory planning of multi-
body systems. Continuous-time trajectory planning of multibody sys-
tem falls into the category of semi-infinite programming [19], [20].
Therefore, the first step is to determine an appropriate representation
of continuous-time trajectories using a finite number of variables. To
this sake, a discrete sequence of time instants over the planning horizon
[0, T ] is introduced

t0 , t1 , . . . , tN , tk = kh, h = T/N. (11)

A trajectory of a multibody system is then expressed in terms of the
values of physical quantities at these time instants. Table I tabulates the
list of variables that are related to rigid bodies and joints at a discrete
time instant tk . Here, Q denotes the set of unit quaternions, which
are used to express rotations in the 3-D space. For q ∈ Q and p ∈ R3 ,
the rotation of p by q is written as q p. For q1 ∈ Q and q2 ∈ Q, q2 q1

gives the composition of rotation. Moreover, for a vector Ω ∈ R3 , a
quaternion that expresses a rotation with the rotation axis Ω/‖Ω‖ and
the rotation angle ‖Ω‖ is denoted by q(Ω).

The second step is to choose an appropriate parameterization of
the physical quantities of a multibody system. One can consider two
different parameterizations: sparse parameterization and dense param-
eterization. In the sparse (redundant) parameterization, all physical
quantities that are listed in Table I are treated as independent variables.
In the dense (reduced) parameterization, on the other hand, the rigid
body states (position, orientation, velocity, and angular velocity) are
functions of the joint angles and velocities, and the kinematics and the
dynamics of the multibody system are expressed in the classical joint
coordinate space. The sparse parameterization has a modular property;
when some rigid bodies and joints are added to (or removed from) the
system, changes to its parameterization can be done simply by adding
or removing the corresponding variables and constraints. Moreover,
kinematic loops can be easily incorporated with no special treatment.
The sparse parameterization obviously requires a greater number of
variables and constraints than the dense parameterization. This can be
a potential drawback, since in general, greater variable dimension in-
dicates greater computation cost and slower convergence. On the other
hand, the sparse parameterization lets the landscape of the constraint

functions be simpler than that of the dense parameterization, and there-
fore, it is more likely to accept a greater step size when combined
with a novel line search. Some comparison results between the two
parameterizations are shown in Section IV.

In the following, a series of constraint conditions is introduced. Some
are common to both sparse and dense parameterizations, while some
others are unique to one parameterization. Throughout this section, the
decision variables of trajectory planning are written in bold italic so
that they can be easily distinguished from other symbols.

B. Constraints for the Smoothness of Trajectories

The trajectories of joint angles must be C1 continuous in order to be
executable on real robots. Otherwise, their second derivative (accelera-
tion) will be impulsive and therefore such trajectories will be physically
unrealizable. To fulfill this requirement, the joint angle trajectory of the
joint j is expressed by a piecewise quadratic function of time given as
follows:

θj (t) = (1 − s2 )θj,k + s2θj,k+1 + s(1 − s)hνj,k

if t ∈ [tk , tk+1 ). (s = (t− tk )/h).

Here, the following constraint is imposed to ensure that θj (t) is C1

continuous at every discrete time instant

θj,k+1 − θj,k

h
− ν j,k+1 + ν j,k

2
= 0. (12)

C. Constraints for Sparse Parameterization

The restriction of relative motion between a pair of rigid bodies
imposed by a joint is expressed by the following set of constraints.
Consider rigid bodies i1 and i2 connected by joint j. At the position
level, we have

pi1 ,k + qi1 ,k p̂i1 ,j = pi2 ,k + qi2 ,k p̂i2 ,j (13a)

qi1 ,k q̂i1 ,j q(ηj θj,k ) = qi2 ,k q̂i2 ,j (13b)

and at the velocity level, we have

vi1 ,k + ωi1 ,k × (qi1 ,k p̂i1 ,j ) = vi2 ,k + ωi2 ,k × (qi2 ,k p̂i2 ,j )

(14a)

ωi1 ,k + (qi1 ,k q̂i1 ,j ηj )ν j,k = ωi2 ,k . (14b)

Here, p̂i ,j and q̂i ,j are parameters that determine the position and
orientation of joint j, respectively, from the local coordinate frame of
rigid body i. Moreover, ηj denotes the rotation axis of joint j.

From Newton–Euler equations of motion, we have

mi

h
(vi ,k+1 − vi ,k ) = mig +

∑

j∈J (i)

ρ(i, j)f j,k (15a)

Ii (qi ,k )
h

(ωi ,k+1 − ωi ,k ) = ωi ,k × Ii (qi ,k ) ωi ,k

+
∑

j∈J (i)

ρ(i, j)[nj,k + (qi ,k p̂i ,j )× f j,k ]. (15b)

Here, mi denotes the mass of the rigid body and Ii (qi ,k ) denotes
the inertia matrix with respect to the global coordinate frame (thus,
dependent on the orientation qi ,k ). Moreover, J (i) denotes the set
of joint indices connected to a rigid body i, and ρ(i, j) is a function
which takes 1 or −1 depending on whether the force of joint j applies
positively or negatively to a rigid body i.
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D. Constraints for Dense Parameterization

Due to limitation of space, we consider a simple case in which
all rigid bodies belong to the same kinematic tree that has no loop.
Moreover, the rigid body at the root of the tree is fixed in space.
Extension to more general settings (multiple trees, floating base, loops)
is possible but not explained here. From the equations of motion in the
joint coordinate space, we have the following constraint:

M (θk )
h

(νk+1 − νk ) + c(θk , νk ) = τ k . (16)

Here, θk , νk , and τ k are vectors composed of the angles, veloc-
ities, and torques of all joints that belong to the tree, respectively.
Moreover, M (θk ) and c(θk , νk ) are the inertia matrix and the Corio-
lis/centrifugal/gravitational force vector in the joint coordinate, respec-
tively.

E. Tasks and Miscellaneous Constraints

A reaching task constrains the position and the orientation of a pair
of rigid bodies to match during a certain time interval. Constraints for
a reaching task n imposed between two rigid bodies with indices i1
and i2 for a time interval [tn , tn ] are given as follows:

pi1 ,k = pi2 ,k

qi1 ,k = qi2 ,k ∀ k s.t. tk ∈ [tn , tn ]. (17)

Here, orientation-matching constraint may be removed to realize
position-only reaching, depending on the needs.

A collision avoidance task is expressed as a constraint that the bound-
ing spheres of a pair of rigid bodies do not intersect during the task
interval

‖pi1 ,k − pi2 ,k ‖2 ≥ (ri1 + ri2 )2 ∀ k s.t. tk ∈ [tn , tn ]. (18)

Here, ri denotes the radius of the bounding sphere of a rigid body i.
One may use convex hulls instead of bounding spheres for more precise
collision avoidance. Here, the technique that is proposed in [15] would
be used to ensure that the distance function is C1 . Note that pi ,k that
appears in the above two constraints is a function of θk when the dense
parameterization is used.

Range constraints can be imposed on any scalar-valued or vector-
valued variable. Typical usage of range constraints include joint mov-
able ranges and torque limits.

Some rigid bodies must have their trajectories fixed. These include
static objects, the base links of robotic arms, and objects that follow
predefined reference trajectories. In the sparse parameterization, the
trajectory of a rigid body i can be made fixed by the following slight
modifications:
1) Treat the variables (pi ,k , vi ,k , qi ,k , ωi ,k ) as constants;
2) Disable the constraints (15a)(15b) for rigid body i.

In a similar manner, joint trajectory can be fixed as well.
Remark 3: A special care is required for handling quaternion vari-

ables, which appear in the sparse parameterization. It is inefficient to
treat a quaternion q as a vector in R4 with an additional constraint
‖q‖ = 1, because it introduces extra nonlinear equality constraints into
the problem. Instead, the direction of change of q is expressed by a vec-
tor δq ∈ R3 . Given δq and a step size α, q is updated by q := q(α δq) q
(recall the definition of q(Ω) mentioned earlier). Differentiation of
constraint functions with respect to quaternions is made based on this
update law. The details are omitted due to limitation of space.

IV. EXAMPLES

The performance of the proposed planning algorithm is eval-
uated in some examples. In all examples, the algorithm is
implemented in a C++ program and run on a computer with 2.8-GHz
CPU.

A. Reaching Task of a 3-Degree-of-Freedom Robotic Arm

First, the planning algorithm is applied to a reaching task of a 3-
DOF robotic arm. The first objective of this example is to demonstrate
the capability of the prioritized trajectory planner to produce a variety
of trajectories according to different constraint settings. For the sake
of visualization, the motion of the robotic arm is limited on a 2-D
plane. The second objective is to compare computational performances
between different problem formulations, scene representations, and
solution algorithms. The robotic arm is composed of five rigid bodies:
the base link, three intermediate links (1, 2, and 3), and the hand. These
bodies are connected by joints in this order. The angle of the joint
connecting link 3 and the hand is fixed; the hand is therefore fixed
to one end of link 3. The task is to move the hand to two targets (1
and 2) sequentially. To achieve this, reaching tasks without orientation
matching are created between the hand and the targets, which are named
task 1 and 2. The duration of the tasks are: [t1 , t1 ] = [2.45, 2.55],
[t2 , t2 ] = [4.45, 4.55]. The length of the planning horizon is set as
T = 5 and the time resolution is set as h = 0.5, which implies N = 10.

Planned trajectories under some different settings are shown in
Fig. 1. The results are obtained by the proposed algorithm using the
sparse parameterization. In all cases, the priority of task 1 is set as
1 and that of task 2 is set as 2. The priority of other constraints are
set as 0. In case (a), both targets are inside the reachable range of the
hand. As a result, the hand is moved to the targets during the respective
task intervals. In case (b), target 1 is outside the reachable range. In
this case, the distance to target 1 is minimized, while reaching target
2 precisely. In case (c), a velocity limit [−20, 20] [◦/s] is imposed on
each joint with the priority 0 so that the robot cannot reach both the
targets. As a result, target 1 is precisely reached, while the distance to
the target 2 is minimized using the remaining degrees of freedom. In
case (c), some residual error is observed in the constraint of task 1. This
is mainly due to the fact that the Gauss–Seidel iteration in QP is ter-
minated after a finite number of iterations; therefore, the residual error
can be reduced by increasing the number of iterations, at the expense
of greater computation cost. Case (d) is a case of two incompatible
tasks. Here, target 1 is in a different position and it is to be reached
by the middle of the second link. Moreover, the task duration is set as
[t1 , t1 ] = [4.45, 4.55], which is the same as task 2. The result shows
that task 1 is achieved precisely, while the distance between the hand
and target 2 is minimized.

Next, we compare the computational performance of four differ-
ent combinations: Pareto-sparse, Pareto-dense, WGP-dense, and LGP-
dense. Case (b) of the above example is used for comparison. Pareto-
sparse and Pareto-dense are the combinations of the proposed pri-
oritized Pareto algorithm and the sparse and dense scene parame-
terizations, respectively. WGP(LGP)-dense compute the conventional
WGP(LGP) based on the dense scene parameterization using the
IPOPT nonlinear constrained optimization solver [22] (see [23] for
application to trajectory planning of humanoids).

WGP-dense minimizes the weighted cost function (2), while LGP-
dense computes a series of constrained minimization problems (3).
Here, φl (z) is given by φl (z) = ‖el (z)‖2 . For WGP-dense, the weight-
ing parameters are set as w0 = 10.0, w1 = 1.0, and w2 = 1.0. For each
setting, we consider cases with and without the dynamics constraints
[(15a) and (15b) for the sparse parameterization and (16) for the dense



1232 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 5, OCTOBER 2014

Fig. 1. Planned trajectories in reaching task of a 3-DOF robotic arm.

Fig. 2. Comparison of convergence results [for case (b), dynamics constraint
enabled].

parameterization]. This is because these constraints have great influ-
ence on the convergence property of the methods. Finally, the results
of WGP(LGP) combined with the sparse parameterization are not pre-
sented here. This is because quaternions must be treated as 4-D vectors
with norm constraints in IPOPT, and in our experience, this resulted in
very poor convergence and frequent optimization failure.

Fig. 2(a)–(d) shows the convergence results of the above four set-
tings with the dynamics constraints enabled. In each figure, the lines
depict the change of

√
φl of priority levels 0, 1, and 2 during iteration.

Table II(i) shows the number of variables and that of constraints in each
priority level. Table II(ii) shows for each setting the number of itera-

TABLE II
PROBLEM SIZE AND COMPUTATION PERFORMANCE IN EXAMPLE A, CASE (B)

i) Number of variables and constraints
nz nc

l = 0 l = 1 l = 2

sparse w/o (15a)(15b) 908 652 6 6
sparse w/o (15a)(15b) 908 892 6 6
dense w/o (16) 124 84 6 6
dense w/o (16) 124 124 6 6
ii) Number of iterations and computation time

phase iter. comp.time[s]
Pareto-sparse w/o (15a)(15b) - 19 0.738
Pareto-sparse w/o (15a)(15b) - 52 2.958
Pareto-dense w/o (16) - 12 0.145
Pareto-dense w/o (16) - 121 3.290
WGP-dense w/o (16) - 53 1.805
WGP-dense w/o (16) - 1000 35.395
LGP-dense w/o (16) 0 1 0.088

1 21 1.310
2 22 2.061

LGP-dense w/o (16) 0 1 0.092
1 1000 57.813
2 1000 84.230

tions for convergence and the total computation time. For LGP-dense,
the iteration count and the computation time at different minimization
phases (minimization of φ0 , φ1 , and φ2 ) are shown. The maximum
iteration count of IPOPT is set as 1000. Pareto-sparse shows the fastest
convergence, both in terms of the number of iterations and computa-
tion time. Pareto-dense shows relatively slow convergence compared
with Pareto-sparse. One reason is that the dense nature of constraints
prevented the algorithm from taking a large step size at each iteration.
Moreover, we observe temporary increase of constraint errors, while
theoretically constraint errors should be nonincreasing. This is because
the step size α is lower-bounded by αm in , and as a result, errors of non-
linear equality constraints may increase when the constraints are almost
strictly satisfied. The computation time of WGP-dense is similar to that
of the above two, but it exhibits some residual error at each priority level
after convergence. While tuning the weights, we observed that increas-
ing the weight wl would reduce the residual error of φl , but at the same
time it would increase the residual errors of other priority levels. This
indicates that WGP is likely to converge to a local minimum. In LGP-
dense, the φ0 phase terminates almost immediately, since constraints
with priority 0 are all satisfied at the starting point. The φ1 and φ2

phases show nonmonotone convergence. Temporary increase of cost
functions is observed during the “restoration phase” of IPOPT. This
reflects the difficulty of minimizing a cost function, while maintain-
ing a set of nonlinear equality constraints φl (z) = φ∗l ∀l ∈ [0 : L − 1],
which involve a large number of variables.

B. Reaching Task of a 6-Degree-of-Freedom Robotic Arm

In this section, a reaching task of a 6-DOF robotic arm, which in-
volves 3-D motion, is investigated. The aim of this example is to demon-
strate the use of joint velocity limit constraint with low priority, and to
investigate the influence of the time resolution h on constraint errors
between discrete time instants. Three targets are to be reached by the
robot hand, with the task execution periods [1.45, 1.55], [2.95, 3.05],
and [4.7, 4.8]. At this time, not only position-matching but orientation
matching constraints are enabled as well. Moreover, a single obstacle
is placed in the workspace and a collision avoidance task is assigned
to each link of the robotic arm and the obstacle. Furthermore, range
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Fig. 3. Planned trajectories in reaching task of a 6-DOF robotic arm.

Fig. 4. Constraint errors for different values of h.

constraints are imposed on the joint velocity. In case (c) in the previ-
ous example, velocity limits had the priority 0, but this time velocity
limits are set as [0, 0] and are assigned a priority lower than other
types of constraints. In this manner, a trajectory that achieves reaching
and collision avoidance with smaller and thus efficient movement is
planned. The types of constraints and their priorities are: velocity limit
(3), reaching (2), collision avoidance (1), and other constraints (0). The
planning horizon is set as T = 5, h = 0.25, and N = 20. The planned
trajectories that are obtained by the Pareto-sparse setting are visualized
in Fig. 3. It is observed in the figures that the robot moves its hand to
the three targets, while avoiding collision with the obstacle.

In particular, Target 1 is outside the reachable range of the robot;
therefore, the distance between the hand and the target is made as small
as possible, while their orientation is matched. Although it is difficult
to see from a single view point, each link of the robotic arm and the
obstacle never intersect throughout the planning horizon. Case (a) is
shown for comparison; here, the dynamics constraints (15 a) and (15
b), and the velocity limit are turned off. The planner still produces a
kinematically realizable trajectory without these constraints. The figure
shows, however, that the planned trajectory is winding and the hand
travels a long distance. The reason we obtain such a trajectory is that
the planning algorithm has a property that it outputs a trajectory that
is close to the initial trajectory, which in this case is a trajectory that
the robotic arm stays still in the upright posture. In case (b), on the
other hand, the dynamics and the velocity limit constraints are turn
on. Thanks to these constraints, the planned trajectory exhibits more
efficient movement.

Next, planning results with different values of h (0.25, 0.125, and
0.0625) are compared to investigate the influence of h on constraint
errors between discrete time points. Here, we focus on the translational
kinematic constraint (13 a). The result is shown in Fig. 4. The horizontal
axis depicts the time along the planning horizon and the vertical axis
depicts the constraint error, which is given by the norm of the difference
of the left- and right-hand sides of (13 a) summed over all joints. To
evaluate (13 a) at arbitrary time instants t ∈ [tk , tk+1 ), p(t) (subscript is
omitted) is obtained by quadratic interpolation using pk , vk , and pk+1 ;
and q(t) is obtained by spherical linear interpolation (SLERP) using
qk and qk+1 . In every case, the constraint error tends to show relatively
large values in the middle of discrete time points. Nevertheless, the
error is not more than 0.02[m], which is considered sufficiently small
for most trajectory planning applications. Table III shows the problem
size and the computational cost of each case. Iteration was terminated

TABLE III
PROBLEM SIZE AND COMPUTATION PERFORMANCE IN EXAMPLE B

h nz nc iter. comp.
0 1 2 3 time[s]

0.25 2682 2598 336 36 126 103 8.38
0.125 5322 5118 656 36 246 220 46.22
0.0625 10602 10158 1296 36 486 429 209.84

when α‖δz‖ became smaller than the threshold value 0.05. Although
not used in this paper, a warm-start technique that uses a previously
obtained trajectory as an initial guess for optimization with a finer time
resolution may be useful for reducing the computation time.

V. CONCLUSION

In future work, the developed trajectory planner will be incorporated
into a real-time control loop in which planning is executed at each
control cycle to adapt to unexpected events such as change of obstacle
positions. The current computational performance of the algorithm
allows a control period of a few seconds, which is considered acceptable
for a high-level control loop. The accuracy of trajectory realization on
a real robot should also be investigated.

APPENDIX A
PROOF OF LEMMA 1

For ease of notation, let us write the right-hand side of (7)Dpar
0:L . Let

δz ∈ Dlex 〈φ0 , φ1 , . . . , φL 〉(z). By definition, there exists l ∈ [0 : L]
such that

δφl ′ = 0 ∀l′ ∈ [0 : l − 1] and δφl < 0.

This implies δz ∈ Dpar〈[φ0 ; φ1 ; . . . ; φl ]〉, and therefore, δz ∈ Dpar
0:L .

Next, let δz ∈ Dpar
0:L . By definition, there exists l ∈ [0 : L], such that

δz ∈ Dpar〈[φ0 ; φ1 ; . . . ; φl ]〉(z). This implies that there exists l′ ∈ [0 :
l] such that

δφl ′′ = 0 ∀l′′ ∈ [0 : l′ − 1] and δφl ′ < 0,

and therefore, δz ∈ Dlex 〈φ0 , φ1 , . . . , φL 〉(z). This completes the
proof.

APPENDIX B
PROOF OF LEMMA 2

From the constraint definition, we have that either δz∗ ∈
Dpar〈eI[ 0 : l ] 〉(z) or δz∗ = 0 must hold. Moreover, if δz∗ = 0,
then δe∗ = 0. Therefore, it is trivial that Dpar〈eI[ 0 : l ] 〉(z) = ∅ ⇒
(δz∗, δe∗) = (0, 0).

What remains to be proved isDpar〈eI[ 0 : l ] 〉(z) �= ∅ ⇒ (δz∗, δe∗) �=
(0, 0). Given a Pareto direction δz, one can construct a feasible solution
(δz, δe) for which at least one component of δe is strictly negative.
Moreover, (βδz, βδe) with β > 0 is a feasible solution and βδz is a
Pareto direction. Now, the difference of the cost of (βδz, βδe) and that
of (0, 0) is given by

‖Γz βδz‖2 + ‖Γe (βδe + γe(z))‖2 − ‖Γe γe(z)‖2

= β2 (‖Γz δz‖2 + ‖Γe δe‖2 ) + 2βγΓe δeTe(z).

Here, the term δeTe(z) is strictly negative. Therefore, the right-hand
side can be made negative by choosing sufficiently small β. This implies
(βδz, βδe) with appropriate choice of β gives a smaller cost than (0, 0),
and therefore, (δz∗, δe∗) �= (0, 0). This completes the proof.
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Balancing in Dynamic, Unstable Environments Without
Direct Feedback of Environment Information

Umashankar Nagarajan and Katsu Yamane

Abstract—This paper studies the balancing of simple planar bipedal
robot models in dynamic, unstable environments such as seesaw, bongob-
oard, and board on a curved floor. This paper derives output feedback
controllers that successfully stabilize seesaw, bongoboard, and curved floor
models using only global robot information and with no direct feedback of
the dynamic environment and, hence, demonstrates that direct feedback
of environment information is not essential for successfully stabilizing the
models considered in this paper. This paper presents an optimization to de-
rive stabilizing output feedback controllers that are robust to disturbances
on the board. It analyzes the robustness of the derived output feedback con-
trollers to disturbances and parameter uncertainties and compares their
performance with similarly derived robust linear quadratic regulator con-
trollers. This paper also presents nonlinear simulation results of the output
feedback controllers’ successful stabilization of bongoboard, seesaw, and
curved floor models.

Index Terms—Balance control, legged robots, robot control, underactu-
ated robots.

I. INTRODUCTION

Balancing and postural stabilization is one of the most widely re-
searched topics in bipedal robotics [1]–[3]. Unlike balancing in the
sagittal (frontal) plane, where bipedal robots can exploit their legs’
passive dynamics [4], [5], significant active control is essential to sta-
bilize their motions in the coronal (lateral) plane [6]. Several bal-
ancing control strategies for stabilizing the unstable dynamics of
3-D passive dynamic walkers in their coronal planes were presented
in [7]. The balance recovery strategies of humans balancing on slack-
lines were studied in [8]. In [9], humans balancing on tightropes and
slacklines were modeled as cart-poles balancing on circular tracks, and
several balancing controllers for these simplified models were derived.

Momentum-based control strategies that successfully stabilize hu-
manoid robots on non-level, rocking floors were presented in [10]
and [11]. They directly determined center of pressure and ground re-
action forces at each support foot to achieve the desired momenta.
They, however, did not deal with unstable environments like seesaw
or bongoboard. Controllers that enable planar bipedal robots to walk
on a rolling cylinder were presented in [12] and [13]. Approximate
value function-based control approaches to stabilize humanoid robots
on bongoboards were presented in [14], while adaptive policy-mixing
control strategies for stabilizing humanoid robots on a seesaw were
presented in [15]. However, all these approaches used the environment
information directly for feedback control.

This paper studies the balancing of simple planar bipedal robot mod-
els, modeled as four-bar linkages, in dynamic, unstable environments,
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