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Abstract—This paper presents a modeling strategy of human
driving behavior based on the controller switching model focusing
on the driver’s collision avoidance maneuver. The driving data are
collected by using the three-dimensional (3-D) driving simulator
based on the CAVE Automatic Virtual Environment (CAVE),
which provides stereoscopic immersive virtual environment. In
our modeling, the control scenario of the human driver, that is, the
mapping from the driver’s sensory information to the operation of
the driver such as acceleration, braking, and steering, is expressed
by Piecewise Polynomial (PWP) model. Since the PWP model
includes both continuous behaviors given by polynomials and
discrete logical conditions, it can be regarded as a class of Hybrid
Dynamical System (HDS). The identification problem for the PWP
model is formulated as the Mixed Integer Linear Programming
(MILP) by transforming the switching conditions into binary
variables. From the obtained results, it is found that the driver
appropriately switches the “control law” according to the sensory
information. In addition, the driving characteristics of the be-
ginner driver and the expert driver are compared and discussed.
These results enable us to capture not only the physical meaning
of the driving skill but the decision-making aspect (switching
conditions) in the driver’s collision avoidance maneuver as well.

Index Terms—CAVE, collision avoidance, hybrid dynamical
system, identification, MILP, PWP Model.

I. INTRODUCTION

RECENTLY, the modeling of driving behavior has attracted
great attention by many researchers [1]–[6], and this will

also play an essential role in the design of a secure and safe
vehicle operating system. Since the human driving behavior can
be considered as a mapping from driver’s sensory information
to the operations of driver such as acceleration, braking, and
steering, some linear controller models have been proposed
[7]–[9]. Although the linear models enable us to capture the
physical characteristics of the driving behavior intuitively, they
sometimes mislead us to wrong understanding due to the high
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nonlinearity included in the human driving behavior. This ten-
dency would be emphasized when the considered task becomes
complex. In order to obtain more sophisticated driver model,
some nonlinear dynamics based modeling is promising [10].
From this viewpoint, the Hidden Markov Models (HMMs), the
nonlinear regression models, the neural networks and the fuzzy
systems have been used [12]–[16]. These techniques, however,
have some problems as follows: 1) The obtained model often
results in too complicated model; 2) this makes it impossible
to understand the physical meaning of the driving behavior; 3)
the usefulness of information obtained by these models also
remains questionable, especially for the design of driving assist
system based on the driver model.

When we look at the driving behavior, it is often found
that the driver appropriately switches the simple control laws
instead of adopting the complex nonlinear control law. The
switching mechanism can be regarded as a kind of driver’s
decision-making in the driving behavior. Therefore, it is highly
recommended that the model of the driving behavior involve
both physical skill (operation) and the decision-making aspect
(switching condition). This kind of expression can be catego-
rized into a class of Hybrid Dynamical System (HDS). HDSs
are systems that consist of both continuous dynamics and
logical conditions. The former are typically associated with
the differential (or difference) equations and the latter with
combinatorial logics, automata, and so on. Although many
literatures have dealt with the expression, stability analysis,
control, verification, and identification of the HDS in the con-
trol and computer science communities [11], the application of
the HDS model to the analysis of the human behavior has not
been discussed, as far as the authors know.

In this paper, the Piecewise Polynomial (PWP) model,
which is a class of the HDS, is adopted to understand the
human driving behavior especially focusing on the driver’s
collision avoidance maneuver. The driving data are collected
by using the three-dimensional (3-D) Driving Simulator (DS)
based on the CAVE Automatic Virtual Environment (CAVE),
which provides stereoscopic immersive vision. Although our
DS does not have any motion generator, thanks to the effect
of the stereoscopic immersive vision, the examinee can feel
the pseudo-acceleration. The advantages of using DS are 1)
the safety of the examinee is always guaranteed, and 2) all
environmental information can be captured without installing
any sensor. In our modeling, the mapping from the driver’s
sensory information such as the range between cars, etc., to the
operation of the driver such as steering, etc., are expressed by
the PWP model. Then, we formulate the identification problem

1083-4419/$20.00 © 2005 IEEE
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Fig. 1. Developed driving simulator. (a) Configuration of the DS. (b) CAVE
system.

for the PWP model as the Mixed Integer Linear Programming
(MILP) by transforming the logical conditions into inequali-
ties [17]–[19]. By applying the developed modeling strategy,
it becomes possible to discover not only coefficients in the
polynomials but also parameters in the switching conditions
from the measured driving data. This implies that both physical
meaning of the driving skill and the decision-making aspect
(switching condition) in the driving behavior can be identified
simultaneously.

This paper is organized as follows. In Section II, configu-
ration of the developed DS based on the CAVE is introduced.
In Section III, the scenario of our examination is described.
Based on the setup described in Section III, three drivers col-
lision avoidance maneuvers are investigated in Section IV. In
Section V, the modeling of the collision avoidance maneuver
based on the expression as the PWP model is introduced, and
identification results based on the MILP are shown.

II. CONFIGURATION OF DRIVING SIMULATOR

The configuration and appearance of the developed DS are
shown in Fig. 1(a) and (b). The display unit in the CAVE system
provides the stereoscopic immersive virtual environment, and it
is controlled by ONYX2 (ONYX2-IR2 Desk Side). The display
program was developed by making use of the CAVE library and
the Performer. The cockpit is built by installing a real steering
wheel, an accelerator, and a brake in the CAVE system. The
information on the driver’s operations using the steering wheel,
accelerator, and brake are transferred to the PC through the USB
terminal, and the vehicle position and orientation are calculated
based on these amounts and vehicle dynamics implemented on
the PC using the CarSim software. The results of the calculation

Fig. 2. Definition of physical variables.

Fig. 3. Road environment for experiments.

are transferred to ONYX2 through the Internet (TCP/IP), and
the 3-D visual image based on the position and orientation of
the vehicle shows up on the screen.

III. DATA ACQUISITION IN COLLISION AVOIDANCE

A. Experimental Environment and Conditions

In this paper, we focus on the driver’s collision avoidance
maneuver at the instance of the sudden stopping of the preceding
vehicle.

In order to model the driver’s collision avoidance maneuver,
the following sensory information is captured as the inputs to
the driver:

1) range between cars ( );
2) range rate (time derivative of : );
3) acceleration of examinee’s car ( );
4) lateral displacement between cars ( );
5) lateral relative velocity (time derivative of : );
6) lateral relative acceleration (time derivative of : );
7) yaw angle ( );
8) yaw rate (time derivative of : );
9) yaw acceleration (time derivative of : ).
The definition of variables , , and are illustrated

in Fig. 2.
The outputs of drivers are also specified as follows:

1) braking amount ( );
2) steering amount ( ).

In these definitions, denotes a discrete sampling index.
Note that no acceleration operation is necessary in the collision
avoidance maneuver.

The configuration of the virtual environment developed for
the experiment is shown in Fig. 3. It has four intersections and
two T-type junctions. The road is 940 m long and 7 m wide, and
the pedestrian way is 1.5 m wide. The friction coefficient of the
road was set to be 0.8. The scene around the start point is shown
in Fig. 4.

The vehicle moves from the left side to the right side in Fig. 3.
After the 940-m point, the same environment from the start point
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Fig. 4. Road image at start point.

shows up again. Therefore, the driver feels that this virtual envi-
ronment is straight road with no end point. There exist only two
vehicles in this environment. One of them is a sedan-type car
driven by the examinee. The other one is the big truck, which
runs in front of the examinee and is controlled by the operator
of the experiment. The examinee’s car used in the simulator has
an engine with 3000-cc displacement. In addition, the car is sup-
posed to have an antilock braking system and a range keep con-
trol, in which the distance between cars is kept within certain
range by the controller. The truck in front of the examinee runs
at the constant speed of 50 km/h. The maximum deceleration of
the truck is supposed to be 7 m/s .

B. Procedure of Experiment

The examinee drives the car keeping constant range (26 m)
to the preceding truck. Quantitatively speaking, this range was
decided by considering the parameter called Time To Collision
(TTC), which is defined by

TTC
range

velocity of vehicle
(1)

In our case, TTC was about 2 s, and this value is generally rec-
ognized as “sufficient range” to avoid the collision.

The operator set the red or green parking vehicles on the right
side at each intersection. The examinee is supposed to take a
look at the right side at each intersection, and then, the exam-
inee answers the color of the parking vehicle. When the exam-
inee looks right side at some intersection (randomly chosen), the
preceding truck is supposed to stop with maximum deceleration.
Then, the collision avoidance maneuver of the examinee is mea-
sured. By adopting this examination procedure, we can exclude
the “effect of prediction” of the examinee, which comes from
the iterative experiments. Four trials have been made by each
examinee. Before doing the experiments, all examinee practiced
avoiding the stopped truck to get used to the driving simulator
in advance. Then, each driver took about 10 min to complete all
of the trials.

IV. MEASURED DATA AND MODELING FRAMEWORK

Based on the setup described in Section III, three drivers car-
ried out the avoiding tasks under virtual environments. The col-

TABLE I
INDIVIDUAL INFORMATION OF EXAMINEES

lision avoidance maneuver is characterized by the profile be-
tween the beginning and ending of the steering operation. The
personal information of all three examinees are listed in Table I.

Six profiles of the driving data (two trials from each driver)
are depicted in Figs. 5–10. In these figures, the Ei-j denotes the
jth trial data of the ith driver. In all figures, (a) illustrates the
overview of the collision avoidance maneuver. The mark in (a)
designated by represents the location of the examinee’s ve-
hicle when the preceding truck stops. In the figures, (b) shows
the trajectories in , (range – braking, steering) spaces.
In (c) the time profiles of the steering and braking are shown, and
(d) shows the time profiles of the range, range rate, and lateral
displacement.

Actually, we have asked the examinees to avoid the preceding
vehicle by emphasizing the steering operation rather than the
braking operation. Due to this instruction, in the measured data,
the E2 and E3 did not use braking at all (see Figs. 7–10). On
the other hand, since the E1 was a beginner driver, he could
not avoid the collision only with steering. As a result, he used
braking to secure safety. From these observations, the role of
braking in our setup is considered to “assist” the avoidance task
with steering. Therefore, the steering operation seems to include
higher level decision making than the braking operation. In the
following analysis, we focus only on the relationship between
the sensory information and the steering operation.

Fig. 11 also shows the projected images of three driving
scenes of the E2-2 designated by (1), (2), and (3) in Fig. 8(a).
When we look at trajectories in the (a) part of the figures in all
trials, roughly speaking, the collision avoidance maneuver can
be regarded as the series of the following four sub-maneuvers:
1) the first period of avoidance; (2) the second period of avoid-
ance; (3) the first period of recovery; and (4) the second period
of recovery. In the following, we denote these four periods
“Mode A,” “Mode B,” “Mode C,” and “Mode D.” The more
formal algebraic expression of this maneuver based on the PWP
model is described as follows:

1) Mode A (first period of avoidance)

if (2)

2) Mode B (second period of avoidance)

if (3)

3) Mode C (first period of recovery)

if (4)

4) Mode D (second period of recovery)

if (5)
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Fig. 5. Profiles of the avoiding task of E1-1.

For this model, we give some discussions in the following:
First of all, although the above model does not include dynamics
(i.e., just static mapping only), it is straightforward to extend it
to the model including dynamics by adopting AutoRegressive
(AR) model. Second, only , , and among many sen-
sory information appear in the right-hand side in (2) to (5). In
our past study, we have clarified that , , and played
important roles in the collision avoidance maneuver by applying
the Group Method of Data Handling (GMDH) technique [2],
[20]. Finally, one may argue that it is the combination of the

Fig. 6. Profiles of the avoiding task of E1-2.

range and range rate that affect on the switching of behavior.
The starting point of the steering operation may strongly depend
on the range rate. In this work, however, this point is out of our
consideration. We have focused only on the behavior after the
beginning of the steering operation. In this case, since the range
rate does not vary so significantly (except the mode A) com-
pared with the range between cars (it monotonically decreases
as the time evolves), the switching mechanism can be expected
to be described as the function of the range only.

The graphic representation of this behavior, which is based
on the Hybrid Automaton (HA) expression, is depicted by
Fig. 12. In (2) to (5), , , and are parameters to specify
the switching condition between modes. These parameters
can be regarded as parameters that are closely related to the
decision-making aspect in the human driver. Although these
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Fig. 7. Profiles of the avoiding task of E2-1.

parameters cannot be measured directly, they can be estimated
from the measured data in our proposed technique introduced
in the next section.

Since the structure of this model contains both the continuous
dynamics (polynomials) and the logical conditions (switching
of polynomials), the proposed model belongs to a kind of HDS.
This kind of HDS model enables us to capture not only the
physical meaning (polynomials) but the decision-making aspect
(logical conditions) in the driving behavior as well. As men-
tioned above, since the switching conditions between each in-
terval are not specified in advance in our problem setup, the
parameters specifying switching conditions ( to ) and coef-
ficients appearing in each polynomial ( to ) must be discov-
ered simultaneously from the measured data. In the next section,

Fig. 8. Profiles of the avoiding task of E2-2.

the strategy to solve this simultaneous identification problem is
introduced.

V. MODELING OF DRIVER’S BEHAVIOR BASED ON PWP
MODEL AND MILP

A. Useful Tools for Identification of PWP Model

The goal of our modeling is to discover not only coefficients
in the polynomials , , , and but also parameters in
the “switching conditions” from the measured driving data.
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Fig. 9. Profiles of the avoiding task of E3-1.

Although this identification problem is not straightforward to
handle, the idea developed in the Mixed Logical Dynamical
Systems framework [18], [19] makes it tractable. The key idea
is to transform the logical condition into some linear inequal-
ities by introducing auxiliary binary variables and
auxiliary continuous variables and to formulate the problem
as the MILP.

In the following, some useful tools to transform the logical
condition into linear inequalities are introduced. First, the log-
ical relationship given by

(6)

can be transformed into the inequalities

(7)

(8)

Fig. 10. Profiles of the avoiding task of E3-2.

where , , and is a small
tolerance. In addition, in our setup, the product term of binary
and continuous variables such as often appear. Since it
is undesirable to handle this nonlinear term, we next introduce
another auxiliary variable , which satisfies the fol-
lowing two logical relationships:

(9)

These relationships can be transformed into the following equiv-
alent inequalities:

(10)

(11)

(12)

(13)
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Fig. 11. Projected image of three driving scenes of E2-2. (a) Scene at (1).
(b) Scene at (2). (c) Scene at (3).

Fig. 12. Graphical representation of PWP model.

B. Identification of PWPS Model by MILP

In order to transform the four logical conditions involved in
(2) to (5) into the equivalent inequalities, binary variables ,

, and are introduced as follows:

1) .
2) .
3) .
4) .

By applying the transformation rules and introducing the
auxiliary variables, (2) to (5) can be rewritten as the following
equation:

(14)

where the auxiliary variables are defined as follows:

(15)

(16)

(17)

(18)

(19)

(20)

In addition, as stated in the previous section, some linear in-
equalities that come up with the introduction of and
must be accompanied with (14) to (20).

Now, the problem to find the coefficients in the polynomials
and the parameters in the switching condition is formulated as
the following MILP:

known

find

which minimize (21)

subject to

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

where is substituted for the continuous part of (i.e.,
, , etc.). and ( ) are the maximum and

minimum values of , and and represent the max-
imum and minimum values of to , respectively. is a small
tolerance.
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Here, we have used the performance index in (21) and
not the root mean square errors. The reason is to formulate the
problem as an MILP. If we adopt root mean square errors, the
identification problem leads to Mixed Integer Quadratic Pro-
gramming (MIQP). MILP has a much bigger computational ad-
vantage compared with MIQP.

There are several ways to solve the MILP. One of the most
efficient algorithms is a branch-and-bound method. Although it
requires some heuristic rules in the decision of the branching
and bounding operation, it can guarantee the global optimality
and can reduce the computational burden with the assistance of
appropriate heuristic rules.

Note that the computational burden strongly depends on the
number of binary variables since this specifies the size of the
search space. In our case, the number of the sample points af-
fects the computational burden significantly.

Finally, we address the following two important problems to
extend the model: First, as described in Section IV, if we try to
include the range rate in the switching condition like

one more trial data (totally two trial data; this is minimum re-
quirement) must be input to the identification procedure. (Oth-
erwise, the parameters and in the switching condition
shown in the above inequality cannot be determined uniquely.)
Although this case may be tractable theoretically, unfortunately,
unreasonably large computational effort is required in our cur-
rent framework. The more complicated switching mechanism
will be addressed in our future work.

Second, generally speaking, the braking and steering opera-
tions may interact with each other. The difference of the amount
of the braking certainly leads to the different steering operation.
Moreover, for the more complicated task, the steering and
braking operations may interact with in more complicated
manner. In this case, analyses of both the steering and braking
will be required. Development of the driver’s model including
both the braking and steering operations can be done by
adopting either of following two scenarios.

1) The steering and braking operations are modeled in-
dependently by regarding them as outputs from two
single-output controllers. In this case, we will see dif-
ferent switching scenarios for steering and braking.
Therefore, some coordination model to integrate them
must be developed.

2) The steering and braking operations are modeled simul-
taneously by regarding them as outputs from one multi-
output controller. Even in this case, a developed identifi-
cation algorithm will return satisfactory results. However,
it may not be straightforward to give a clear interpretation
for the obtained switching points since the time intervals
where steering and braking are active are different

C. Identification Results and Discussions

Based on the formulation of the identification of the PWP
model described in the previous subsection, the identification of
coefficients in the polynomials and parameters in the switching
conditions was carried out. The 20 sampling data of the six trials

shown in the previous section were used for the identification.
These data were selected by culling from the measured data
with longer sampling interval (around 150 ms, depending on
the length of the profile). Before applying the MILP to the mea-
sured data, all input data were normalized as follows:

(33)
Output data were also normalized in the same way.

All numerical experiments for parameter identification have
been performed by PC (CPU Pentium 4 3.06 GHz and Memory
1024 MB). We have used commercial software called NUOPT
to solve MILP. It took about ten minutes to find the solution
for each trial data. In order to verify the validity of the ob-
tained PWP model, the reproduced steering profiles generated
by the identified parameters are plotted together with the mea-
sured steering profiles and the identified switching points in
Figs. 13–18.

In Figs. 13–18, the horizontal and vertical axes represent the
range between cars and the steering amount, respectively. In
the steering amount, the right and left turn take positive and
negative values, respectively. In addition, the switching points
between polynomials ( ) are designated by vertical lines. As
shown in Figs. 13–18, the measured and reproduced steering
profiles agree well with each other. These results verify the va-
lidity of the modeling based on the PWP model.

In order to understand the characteristics in the collision
avoidance maneuver, the identified parameters for these six
trials are analyzed in the following. The identified coefficients
in the polynomials , , , and , the parameters in the
switching conditions , and the value of objective function
are listed in Tables II–IV.

Based on these results, we discuss the collision avoidance
maneuver in the following.

1) Coefficients in Polynomials ( , , , ): Although it is
not straightforward to give rigorous interpretation of all identi-
fied coefficients listed in the tables, some interesting characteris-
tics can be found. First, similar control coefficients are collected
and classified in each mode by referring to the magnitude and
sign of parameters as follows:

• Mode A: (E1-1, E1-2), (E2-1, E3-2), (E2-2, E3-1);
• Mode B: (E1-1, E1-2), (E2-1, E2-2, E3-1, E3-2);
• Mode C: (E1-1, E1-2, E3-1, E3-2), (E2-1, E2-2);
• Mode D: (E1-1, E1-2, E3-1, E3-2), (E2-1, E2-2).

The driving characteristics of each mode can be summarized as
follows.

• Mode A: The magnitude of is greater than the magni-
tudes of and in all trials. Since the measured vari-
ables are normalized, this implies that all drivers signify
the lateral displacement. In addition, holds for all
six trials. On the other hand, although the driver E1 used
similar control coefficients in two trials, the drivers E2 and
E3 used different control coefficients in each trial (sign of

and were changed). This implies that there exist two
control ways to avoid the collision in mode A. The dif-
ference of coefficients between E2-1 and E2-2 (also E3-1
and E3-2) may have some relation to the difference of the
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Fig. 13. Comparison of measured and reproduced steering profiles (E1-1).

Fig. 14. Comparison of measured and reproduced steering profiles (E1-2).

Fig. 15. Comparison of measured and reproduced steering profiles (E2-1).

Fig. 16. Comparison of measured and reproduced steering profiles (E2-2).

switching point . The in the E2-1 and E3-2 emerged
“before the peak” of the steering profile, and the in the
E2-2 and E3-1 emerged “after the peak” of it (see Fig. 15).

Fig. 17. Comparison of measured and reproduced steering profiles (E3-1).

Fig. 18. Comparison of measured and reproduced steering profiles (E3-2).

TABLE II
IDENTIFIED PARAMETERS OF E1

• Mode B: The E2 and E3 used similar control coefficients,
i.e., , , and , and the magnitude of the
is greater than the magnitude of and . On the other
hand, the E1 used quite different control parameters. The
magnitude of is greater than the magnitude of and .
This implies that the E1 signifies the range in the mode B.
This phenomenon can be explained by the use of braking
of the E1 (recall that the E2 and E3 did not use the braking
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TABLE III
IDENTIFIED PARAMETERS OF E2

TABLE IV
IDENTIFIED PARAMETERS OF E3

TABLE V
AVERAGE AND VARIANCE OF SWITCHING POINTS

at all). Since E1 is the beginner driver, the E1 relied on
the range information rather than the lateral displacement.
Thus, this mode clearly shows the difference between the
beginner and the expert (in other words, the effect of using
braking).

• Mode C: The sign of all coefficients are consistent in this
mode. This mode shows highest similarity among four
modes. The only difference seen in this mode was the
magnitude of coefficients. The E2 used relatively small
control coefficients.

TABLE VI
COMPARISON OF J

Fig. 19. Comparison of measured and reproduced steering profiles (E1-1,
three modes).

• Mode D: The magnitude of all coefficients is small in this
mode. This implies that the control effort was less re-
quired compared with other mode. The negative was
used by the E2.

As discussed above, although the control scenario varies from
driver to driver, the list of coefficients can be used to analyze the
drivers’ characteristics in a quantitative manner.

Note that the parameters of the E1 may show different ten-
dency (especially in the Mode B) when the braking operation
is included in the model explicitly by using the strategy for the
multioutput case described in Section V-B. Although this point
seems interesting, the analyses emphasizing the steering can be
a good first step to understanding the case of the multioutput
model. This point will be addressed in our future work.

2) Parameters in Switching Conditions ( ): Although all
three drivers seem to switch the control law appropriately, the
variance of the switching condition of all trials (twelve trials)
shows the interesting phenomena. The average and variance of
each switching point are listed in Table V, wherein the vari-
ance of the second switching point takes the smallest value.
This is because the second switching is caused by the change of
the gazing point of the driver (from back of the truck to the far
front of the road; see Fig. 11), and this change always occurs at
almost the same geometrical situation between vehicles. On the
other hand, the variance of the third switching point takes the
extremely largest value. This implies that the third switching has
no clear reasoning from the viewpoint of decision making since
the driver can find no clear target during Modes C and D. These
analyses represent the inherent advantage of the modeling based
on the controller switching model.

3) Number of Modes: We have investigated the case where
the number of modes is reduced to three. First of all, the perfor-
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Fig. 20. Comparison of measured and reproduced steering profiles (E1-2,
three modes).

Fig. 21. Comparison of measured and reproduced steering profiles (E2-1,
three modes).

Fig. 22. Comparison of measured and reproduced steering profiles (E2-2,
three modes).

Fig. 23. Comparison of measured and reproduced steering profiles (E3-1,
three modes).

Fig. 24. Comparison of measured and reproduced steering profiles (E3-2,
three modes).

mance index is listed in Table VI, wherein the modeling accu-
racy was degraded by decreasing the number of modes. In addi-
tion, the identification results are shown in Figs. 19–24. As we
can see in these figures, the switching point in the four-mode
model tends to disappear in the three-mode model [except for
Fig. 21 (E2-1)]. These results back up the discussion as for the
unclear switching, i.e., the largest variance of .

VI. CONCLUSIONS

In this paper, we have developed the modeling strategy of the
human driving behavior based on the expression as PWP model,
especially focusing on the driver’s collision avoidance maneu-
vers. The driving data was collected by using the driving sim-
ulator, which provides 3-D stereoscopic immersive virtual en-
vironment. The identification problem of the PWP model was
formulated as the MILP by transforming the logical switching
conditions in the PWP model into inequalities. By applying our
proposed modeling framework, it has been found that the driver
appropriately switches the “control law” according to the sen-
sory information. In addition, we have compared the driving
characteristics of the beginner driver and the expert driver. As
for the results, we could see that the beginner driver tends to sig-
nify the range information rather than the lateral displacement
between cars in the mode of small range (Mode B). Moreover,
the comparison between the four-mode model and the three-
mode model has been made and discussed, related to the vari-
ance of the switching points. These quantitative discussions en-
able us to interpret not only the physical (operational) meaning
of the driving skill but the decision-making aspects (switching
conditions) of the the driving behavior as well. The analysis in
more complicated situation, and the application of the obtained
results to the design of the collision avoidance support system,
are the subjects of future work.
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